

 Copyright  2003-2004, Epsilon-Logic Systems

2

The SCRIPT Language

The ELS-Script® language, also referred to as the SCRIPT, is essentially a powerful scripting language specially

designed for the purpose of the creation of standard, as well as complex report documents.

It defines a full set of syntax elements destined to introduce a new direction in the technology of modern report

making. Already, the traditional snapshot based report technology is becoming outdated with the rise of the

Internet and the globalization of several markup language standards, such as HTML, DHTML, VB Script, Java

Script, ASP, CSS, XML and XSLT. As an analogy, we may say with great confidence that this new report

technology introduced by the SCRIPT is to the traditional old report technology, as the .NET web development

environment is to the ASP, VB scripting and Java scripting technology. In other words, it is a remarkable

combination of the best of all worlds.

The features of the SCRIPT language cover not only the presentation, but all aspects of report development cycles,

from the query parameter selection to the data binding; the generation and the presentation of the report's result

output in standard open document format. It has the capabilities to produce literally any kind of multi-section,

multi-group, cross tabular, record or matrix based report, or for that matter, any presentation document. In

particular, such documents may be HTML formatted reports, web pages, Active Server Pages, XML files, or any

markup language based document.

The prerequisites for this chapter are kept to the minimum. In particular, some basic knowledge of SQL and

HTML is required. An outline of all HTML elements that are important in the context of the SCRIPT language will

be given. In addition, the reader must have some prior working knowledge of software programming. To acquire

experience with the SCRIPT language, it is recommended to download a trial version, or purchase the release

version of the ELS-Script® package. The package comes with a stand-alone visual report designer, a script editor,

the report compiler along with the report engine (the product may be purchased from Epsilon-Logic Systems at the

following URL: http://www.epsilon-logic.net/ELSScript.asp).

The current implementation of the SCRIPT language is specialized to XHTML formatted report output generation,

which naturally is very suitable for the application of web reporting. This chapter therefore will cover the

description of all elements of the syntax of the SCRIPT language with simple, to moderate, illustrations and code

samples based on XHTML format.

In brief, we will discuss the following issues:

� Advantages in designing reports using the SCRIPT language verses the visual methods

� Basic and advance syntax elements of the SCRIPT language, with step by step tutorials and hands on

code illustrations

� Utilizing the SCRIPT editor that comes with the ELS-Script package

� Application of the SCRIPT to some real-world report examples, where we will give a complete and self-

contained coverage of the design of sample reports, as well as, the underlying sample database

Chapter 2

2 Copyright  2003-2004, Epsilon-Logic Systems

construction

� Overview of the basic architecture of the report SCRIPT compiler and output generator

Why to SCRIPT?
Yes, why to SCRIPT? When all the report tool manufacturers on the market are advertising that theirs is the tool

with ingenious visual report designer that requires absolutely no complicated coding or scripting. The current state

of the art of the report making has traditionally evolved along the collective pattern of almost 20 years of software

technology hype that has created the surprising baseless demand, that modern report tools must have absolutely no

scripting capabilities.

The story goes as follows. Back in the 80's software and computer industry giants such as Apples, Microsoft, HP,

IBM and others, were in for a race to develop the most graphical or visual user interfaces. Back then, some terms

such as WYSIWYG (acronym of What You See Is What You Get) played a very powerful role in the daily tasks of

the average office employee, whose computer operation skills were extremely limited. With the advent of the

TrueType fonts and laser printer technologies, WYSIWYG became the norm for document creation tool repertoire.

As a result the concept of device independence became feasible, so that for any selected printer the corresponding

device context maps the document page to the display monitor (e.g. in the print preview), approximating the

appearance of the actual printed page with high degree of precision.

Report tool developers incorporated these WYSIWYG features to simplify the creation and design of continuous

report forms, essentially bringing the art of report making down to the level of average office employee's computer

skills. There approach was statistical in nature and had the following primary goals:

� To maximize visual design methodology in designing a report

� To eliminate coding or scripting from the report tool

� To simplify report making process at least for most standard report types

Although none of these conditions mutually exclude each other, it was mysteriously assumed that visual design

methods should eliminate scripting, while simplification should rule out advance enhancements or extensibility.

Not to mention the little old golden rule of reusability. Therefore, report making problems were solved in a

quantitative rather than qualitative manner, which certainly satisfied 60-70% of most standard report types.

One does not have to think much to understand that to support full scripting capabilities in a report tool does not

necessarily imply that it should not have visual designer. Nor simplification implies sacrificing enhanced

functionality and extensibility. What about the "best of both worlds" motto? Obviously the original developers of

the existing report tools in the market, tried to avoid writing parsers and compilers.

Therefore, our initiative in the development of ELS-Script® report tool had the following goals:

� To maximize visual design methodology in designing a report

� To provide full scripting capability to the report designer

� To simplify the tasks of report making as well as data retrieval

� To enhance functionality to cover virtually any data representation in any medium

� To define a simple and universal report template format for standardization of industry level report types

� To streamline the art of report making with the current software technologies

Advantages of using the SCRIPT

The art of report making must incorporate both powerful visual design methods and scripting, moreover this

scripting must be complete, covering all aspects of the report template and therefore serving as a source code.

Most third party report tools satisfy this condition only partially, while ELS-Script® report tool is designed ground

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 3

up to fully satisfy this condition.

To illustrate the importance of scripting we will outline next the major tasks that must be undertaken for the

preparation of a standard report. After acquiring the user requirements:

1. Analysis of the data and report content must be performed.

2. The actual report page must be designed, which incorporates constant text labels, graphic elements,

variable sections, page setup, etc.

3. Query commands must be built, to define the field elements that will be included in the variable sections.

4. Fields and formulas must be included.

5. Grouping, aggregations and sorting must be defined.

6. Query parameter form and report generator integration issues must be addressed in the host applications.

Of these only the second task is where most of the visual design methods can be applied, while all the other tasks

require coding or scripting to a certain extend. In fact, even in the second task there are operations that may be

simplified if scripting is incorporated side by side with visual design methods. For example, positioning borders,

lines, text and graphic objects, via free-style pointer device maneuvers is much more difficult and inaccurate, than

simply entering precise coordinate values relative to the page margins. In contrast, the other tasks such as query

building, formula or expression building, as well as defining nested or hierarchical groups, are in essence so

natural when accomplished via scripting.

The SCRIPT language supports all aspects of report development tasks, for example there are special syntax

elements that handle page setup and other report setting parameters. It has full conditional controls and iteration

elements to define grouping and complex data representation. Finally, it has special syntax elements that can

define any query parameter form, so that the complicated task of integration of the report generator engine with the

host application can be achieved by adding just a few lines of code.

In ELS-Script
®
 report tool, the contents of a report file are defined and stored via the SCRIPT language. This

assures full support for maintenance, as well as reusability of report files as templates. The language features cover

Standard Report Templates, which combined with preprocessor directives increases the reusability index to

maximum efficiency.

Basics of the SCRIPT
The SCRIPT language is a mixture of SQL procedural language combined with the syntax and the flavor of the

Visual Basic function attributes. The reason behind the SQL procedural nature of the SCRIPT language is two

fold. First, it provides a unified simple language for both data retrieval as well as data representation. For example,

to build queries one needs some familiarity with the SQL statement language, moreover to write stored-procedures

additional knowledge of SQL procedural language is required. And therefore, instead of escalating the learning

curve for users, by introducing new language syntax, we have used a syntax which is very similar to SQL

procedural language.

The second reason is that often the advance reports are developed by SQL programmers or database

administrators, and therefore, defining the SCRIPT language in their native language will definitely increase the

popularity and utilization of the ELS-Script
®
 software system.

In the following we will define the basic syntax elements of the SCRIPT language; essentially covering:

� HTML and ELS tags

� Report sections

� Basic data types

� Declaration and evaluation

� Operations on data types

� Conditional and iteration controls

Chapter 2

4 Copyright  2003-2004, Epsilon-Logic Systems

HTML and ELS Tags

The concept of the SCRIPT language evolved around the markup language scripting; very similar to VB, Java or

ASP scripting. Essentially the HTML code would be mixed with these script elements distinguished via tag

identifiers. But unlike VB, Java or ASP scripting, the SCRIPT language is not intended to be an instruction list for

a virtual machine running as a background server. Rather, it is first compiled into an object form, which then is

served as specifications when the report engine is called, to generate the output of the report.

Therefore, to proceed in the description of the SCRIPT language, we need some working knowledge of HTML

coding. Note though that the ELS-Script
®
 package contains a visual HTML designer, and that it is not a

requirement to be an HTML guru to be able to use ELS-Script
®
 report tool.

The following table gives an overview of all the HTML tags with attributes that are relevant to the SCRIPT

language:

Elements Description

<!-- , --> Comments (start and end tags)

 Bold text

<BASEFONT> Default font for a document section

Relevant attributes: COLOR, FACE, SIZE, etc.

<BIG> Big font relative to the current font

<BODY> The document displayable content

Relevant attributes: BACKGROUND, BGCOLOR, BGPROPERTIES, BOTTOMMARGIN,

LEFTMARGIN, RIGHTMARGIN, TOPMARGIN, TEXT, SCROLL, etc.

 Line break

<CAPTION> Figure or table caption
<CENTER> Center the alignment

<COL> Column in COLGROUP or TABLE

Relevant attributes: ALIGN, CHAR, CHAROFF, SPAN, VALIGN, WIDTH, etc.

<COLGROUP> Column group in a TABLE

Relevant attributes: ALIGN, CHAR, CHAROFF, SPAN, VALIGN, WIDTH, etc.

<DIV> A block of document content treated as a logical unit

Relevant attributes: ALIGN, CHARSET, etc.

 Emphasized text

<EMBED> Embedded object

Relevant attributes: (all attributes)

 Font specification

Relevant attributes: COLOR, EFFECT, FACE, SIZE, WEIGHT, etc.

<FRAME> HTML frame used with FRAMESET

Relevant attributes: BORDERCOLOR, FRAMEBORDER, MARGINHEIGHT, MARGINWIDTH,
NORESIZE, SCROLLING, etc.

<FRAMESET> Used with FRAME

Relevant attributes: BORDER, BORDERCOLOR, COLS, FRAMEBORDER, FRAMESPACING,

ROWS, etc.

<H1>, ..., <H6> Heading levels 1 through 6

<HR> Horizontal rule

Relevant attributes: ALIGN, COLOR, INVERTBORDER, NOSHADE, SIZE, WIDTH, etc.

<I> Italic text

<IFRAME> Independently controllable content region

Relevant attributes: (all attributes)

 Graphic image

Relevant attributes: (all attributes)

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 5

<MULTICOL> Multiple column text

Relevant attributes: COLS, OUTTER, WIDTH, etc.

<NOBR> No breaks

<OBJECT> Object embedding

Relevant attributes: (all attributes)

<P> Paragraph section

Relevant attributes: ALIGN, etc.

<PARAM> Parameter for OBJECT

<PLAINTEXT> Plain text

<PRE> Preformatted text, preserves all characters (e.g. many spaces)

<S> Strike through text

<SCRIPT> Scripting

<SMALL> Small text relative to current font

<SPACER> Extra space

 Text span

<STRIKE> Strikeout text

 Strong emphasized text

<SUB> Subscript text

<SUP> Superscript text

<TABLE> HTML table, this is very important in SCRIPT language

Relevant attributes: ALIGN, BACKGROUND, BGCOLOR, BORDER, BORDERCOLOR,

BORDERCOLORDARK, BORDERCOLORLIGHT, CELLBORDER, CELLPADDING,
CELLSPACING, COLS, FRAME, HEIGHT, RULES, WIDTH, etc.

<TBODY> Table body

Relevant attributes: (all attributes)

<TD> Table data (or cell)

Relevant attributes: (all attributes)

<TFOOT> Footer section of TABLE

Relevant attributes: (all attributes)

<TH> Table header

Relevant attributes: (all attributes)

<THEAD> Header section of TABLE
Relevant attributes: (all attributes)

<TR> Table row

Relevant attributes: (all attributes)

<TT> Teletype text

<U> Underlined text

 Table 2.1. The HTML tags and attributes relevant to SCRIPT

The SCRIPT compiler that is included in the ELS-Script
®
 package, parses the HTML together with the special

report script tags, and then processes all HTML material with respect to these SCRIPT instructions. In general, all

report specific instructions must be included between the <ELS> and </ELS> tags. The short version <!> and </!>

of this tags are also allowed, and may be used specially for SCRIPT element sections that fit on a single line. Also

one may optionally use the HTML comment symbols <!-- and --> to hide SCRIPT elements from Internet

browsers. In any case, these symbols are ignored by the SCRIPT compiler. The following code examples all have

the same effect:

Chapter 2

6 Copyright  2003-2004, Epsilon-Logic Systems

 ... HTML elements here...

<ELS>

 ... SCRIPT elements here ...

</ELS>

 ... HTML elements here ...

here is an alternative short tagged form of the above example:

 ... HTML elements here...

<!>

 ... SCRIPT elements here ...

</!>

 ... HTML elements here ...

which is the same as the following:

 ... HTML elements here...

<!> ... SCRIPT elements here ... </!>

 ... HTML elements here ...

here is the same code with the HTML comment symbols:

 ... HTML elements here...

<ELS>

<!--

 ... SCRIPT elements here ...

-->

</ELS>

 ... HTML elements here ...

Note that the SCRIPT elements between the HTML comment symbols are processed by the SCRIPT compiler, and

that only the symbols <!-- and --> are ignored (and not the text in between). In contrast to comment SCRIPT

elements themselves one must use either of the following syntax (similar to C/C++ comment notation):

 // to comment the line after the symbol,

 /* */ to comment multiple line between these two symbols.

Just like HTML tags, some SCRIPT tags have attributes, for example the <ELS> tag has the NAME attribute, which

may be used to identify uniquely the tag. Here is a sample code of <ELS> tags with the NAME attribute:

 ... HTML elements here...

<ELS NAME="MyFirstTag">

 ... SCRIPT elements here ...

</ELS>

 ... HTML elements here ...

Report Sections

In the real industrial world, most standard reports consist of essentially the following sections:

 Report Header which appears once at the beginning of the report

 Page Header which appears once at the top of each page in the report

 Report Detail which contains the data presentation section of the report

 Page Footer which appears once at the bottom of each page in the report

 Report Footer which appears once at the end of the report

Often, the Report Header contains some introductory material to the report document, such as: images, logos,

charts, coverage information, etc. In some cases, this header section may also include report summaries or analyses

that are usually included in the end of the report. In a symmetric way, the Report Footer may include concluding

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 7

material or summaries for the report. In contrast, the Page Header and Page Footer, may contain page specific

material, such as page number, page count, section or group title, footnotes, date, reference, as well as, image and

other such material. The Report Detail is where the body of the report should reside, which consists of data

presentation in a continuous iterative manner, often using a tabular structure along with nested groups and

categories.

The SCRIPT language has special tags for each of these traditional report sections along with a few other program

segment sections. These program segment sections handle the report settings, the background stored-procedure

instructions, the query parameter and the interface parameter lists, essentially rendering the report file to be self-

contained and complete.

These tags are listed below:

 <ELS_QPARAM> ... </ELS_QPARAM> to include interface and query parameter instructions

<ELS_OPROCS> ... </ELS_OPROCS> to include stored-procedure and other process calls

 <ELS_RSETTINGS> ... </ELS_RSETTINGS> to define the report settings

 <ELS_RHEADER> ... </ELS_RHEADER> to include the report header specifications

 <ELS_PHEADER> ... </ELS_PHEADER> to include the page header specifications

 <ELS_RDETAIL> ... </ELS_RDETAIL> to include the report detail specifications

 <ELS_PFOOTER> ... </ELS_PFOOTER> to include the page footer specifications

 <ELS_RFOOTER> ... </ELS_RFOOTER> to include the report footer specifications

The first three section tags allow only SCRIPT elements between the start and end tags, while the other section

tags may contain SCRIPT elements intermixed with HTML or other scripts, depending on the document format. In

general, when using SCRIPT elements in the mixed tag types, one must adhere to the <ELS> tag usage. The

following is a generic example of code illustrating the usage for all section tags:

// generic usage of the report sections

#define LINK_PATH "THIS_FILE\Include\OrderForm.css"

#include "Include\OrderForm.txt"

<ELS_OPROCS>

 // call store-procedures here,

 // you can use only SCRIPT elements in this tags

</ELS_OPROCS>

<HTML>

<HEAD>

<LINK href=LINK_PATH type=text/css rel=stylesheet></LINK>

<BODY>

<ELS_QPARAMS>

 // include the interface or query parameters here,

 // you can use only SCRIPT elements in this tags

</ELS_QPARAMS>

<ELS_RSETTINGS>

 // include report settings here,

 // you can use only SCRIPT elements in this tags

</ELS_RSETTINGS>

<ELS_RHEADER>

 // include report header specifications here,

 // you can use both HTML and SCRIPT elements in this tags

</ELS_RHEADER>

<ELS_PHEADER>

 // include page header specifications here,

 // you can use both HTML and SCRIPT elements in this tags

</ELS_PHEADER>

Chapter 2

8 Copyright  2003-2004, Epsilon-Logic Systems

<ELS_RDETAIL>

 // include report details here,

 // you can use both HTML and SCRIPT elements in this tags

</ELS_RDETAIL>

<ELS_PFOOTER>

 // include page footer specifications here,

 // you can use both HTML and SCRIPT elements in this tags

</ELS_PFOOTER>

<ELS_RFOOTER>

 // include report footer specifications here,

 // you can use both HTML and SCRIPT elements in this tags

</ELS_RFOOTER>

</BODY>

</HTML>

Note that the mixed language sections <ELS_RHEADER>, <ELS_PHEADER>, <ELS_RDETAIL>, <ELS_PFOOTER> and

<ELS_RFOOTER> must be positioned within the HTML body of the report script, while the other sections may

optionally be put inside or outside the HTML body.

We should emphasize that the page header and page footer sections are a little different than the others, in the

sense that they possess the HEIGHT attribute to control the absolute height of the section in the report output.

Basic Data Types

The wealth of a programming language often is related to the completeness of the data type system that it supports.

In the design of the SCRIPT language, data types were implemented with the following goals in mind:

1. They must be standard and already well established in most programming languages.

2. They must be interoperable with most backend database engines, in a sense very similar to the Common

Type System of the .NET platform.

3. They must constitute a complete data type system.

In an attempt to realize these conditions, specially, since SCRIPT language has the SQL Server flavor, it was

decided to adopt data types very similar to that of SQL Server 7. Therefore, the data types in the SCRIPT language

are as follows:

bit integer data with either 1, 0 or NULL value.

int 4-byte integer data type, ranging from -2 31 (-2,147,483,648) through

2 31 – 1 (2,147,483,647).

smallint 2-byte integer data type, ranging from -2 15 (-32,768) through 2 15 – 1 (32,767).

tinyint 1-byte integer data type, ranging from 0 through 255.

numeric numeric data type, ranging from -10 28 + 1 through 10 28 – 1, with a maximum

precision of 15 digits.

money monetary data type, ranging from -2 63 (-922,337,203,685,477.5808) through

2 63 – 1 (922,337,203,685,477.5807), with accuracy to ten-thousandth of a monetary

unit.

smallmoney monetary data type, ranging from -2 31 (-214,748.3648) through 2 31 – 1 (214.748.3647),

with accuracy to ten-thousandth of a monetary unit.

float floating precision number data type, ranging from -1.79 E+308 through 1.79 E+308.

real floating precision number data type, ranging from -3.40 E+38 through 3.40 E+38.

datetime date and time data type, ranging from January 1, 1753 through December 31, 9999,

with accuracy to the millisecond.

smalldatetime short date and time data type, ranging from January 1, 1900 through June 6, 2079,

with accuracy to the minute.

binary fixed-length binary data with a maximum length of 8,000 bytes. The length must be

specified in the generic syntax binary(n), where n is the length.

varbinary variable-length binary data with a maximum length of 8,000 bytes. The length must

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 9

be specified in the generic syntax varbinary(n), where n is the maximum length.

timestamp a database-wide unique number, this data type is semantically equivalent to

binary(8).

char fixed-length non-Unicode character data with a maximum length of 8,000 bytes. The

length must be specified in the generic syntax char(n), where n is the length.

varchar variable-length non-Unicode character data with a maximum length of 8,000 bytes.

The length must be specified in the generic syntax varchar(n), where n is the

maximum length.

nchar fixed-length Unicode character data with a maximum length of 4,000 bytes. The

length must be specified in the generic syntax nchar(n), where n is the length.

nvarchar variable-length Unicode character data with a maximum length of 4,000 bytes. The

length must be specified in the generic syntax nvarchar(n), where n is the

maximum length.

Uniqueidentifier a globally unique identifier, to be used for referencing and manipulation of data

similar to the UNIQUEIDENTIFIER globally unique identifier data type of MS-

SQL Server.

In the rest of this section, we will outline more details about the numeric, float, real, datetime and

smalldatetime data types, illustrated with some simple examples. We begin with the numeric data type. In this

case, valid data values must be in the range from -10 28 + 1 through 10 28 – 1, and will be stored with a maximum

precision of 15 digits. Any number exceeding this limit will result to storage overflow run-time error. The

following table illustrates acceptable valid values together with the corresponding stored values for a variable of

numeric type:

Assigned value Validation Stored value

987654321098765.01234567890123456789 Valid Entry 987654321098765

987654321098765 Valid Entry 987654321098765

9876543210987654321098765432 Valid Entry 9876543210987650000000000000

98765432109876543210987654321 Overflow (NULL)

Note that in the current version of the SCRIPT language, unlike the MS-SQL Server, the numeric data type has no

precision and scale options. So that, this data type is suitable only for the purpose of manipulation and storage of

decimal numbers comprising of at most 15 digits. Exceeding 15 digits will result in truncation and rounding.

We consider next more details for the float and real data types. The float type has the more general syntax

float(n) where n is the number of bits used to store the mantissa of the floating point number, and therefore

dictates the precision and storage size. In particular, if n is specified, it must be a value from 1 through 53. For n,

with 0 <= n <= 24, the storage will be 4 bytes with precision to 7 digits. For n, with 25 <= n <= 53, the storage will be 8

bytes with precision to 15 digits. If n is not specified, by default the storage will be 8 bytes with precision to 15

digits. The real data type is semantically equivalent to float(24) type.

Note that, when assigning a value to a float variable, in non-scientific notation, the value must have the sum of

the digits before and after the decimal point not exceeding 38. Otherwise, the value is out of range. Furthermore,

valid values are approximated and stored with a precision of 7 digits or 15 digits, depending on the specified

mantissa.

Finally, we close this subsection with some details about the datetime and smalldatetime data types. As noted

above, a datetime type variable will take valid date-time values ranging from January 1, 1753 through December

31, 9999, with an accuracy to the millisecond. In contrast, smalldatetime data type variables can take valid date-

time values ranging from January 1, 1900, through June 6, 2079, with accuracy to the minute. The following

examples illustrate the rounding to the nearest minute:

Assigned value Validation Stored value

01/13/06 23:10:29.999 Valid Entry 2006-01-13 23:10

01/13/06 23:10:29.001 Valid Entry 2006-01-13 23:10

Declaration and Evaluation

Like all programming languages, SCRIPT language comes with formal variable declaration syntax to define the

variable type, size, as well as, other properties. This variable declaration syntax along with the assignment syntax

is very similar to the MS-SQL Server procedural language, except that in the SCRIPT language all statements must

be terminated with the ";" terminator. In other words, unlike MS-SQL Server, the colon at the end of any

Chapter 2

10 Copyright  2003-2004, Epsilon-Logic Systems

statement is not optional, and that the absence of this terminator will indeed generate a syntax error.

The generic syntax of the variable declaration is as follows:

 DECLARE @variable_name data_type;

where variable_name is a valid variable name and data_type is any valid data type from the list of all types

described in previous section. Observe the variable indicator prefix "@", which must prefix all basic variable

names, and that the ";" terminator is required for each logical statement. Also, note that the SCRIPT language has

a case insensitive syntax, so you may use your choice of upper or lower case conventions for coding.

A valid variable name comprises of a string of characters satisfying the following conditions:

(a) The string must start with any of the following characters: a ... z, A ... Z, or the underscore character "_".

(b) The rest of the string may be a sequence of alphanumeric characters. That is, any combination of

characters in the following ranges: a ... z, A ... Z, 0 ... 9, or the underscore characters "_".
(c) And finally, variable names must not include any spaces.

We illustrate this with some examples (observe the usage of inline comments):

DECLARE @Last_Name varchar(50);

DECLARE @SSNum char(9); // only digits in social security number

DECLARE @IsInsured bit; // 1 for insured, 0 otherwise

DECLARE @Age tinyint;

DECLARE @DivCode smallint; // division code is numeric value

DECLARE @EmployeeID int;

DECLARE @AverScore numeric;

DECLARE @DOB smalldatetime; // date of birth

DECLARE @Income0_1 money;

DECLARE @Income0_2 money;

The scope of a declared variable extends throughout the entire SCRIPT file, regardless of the particular report

section where it was originally declared. Moreover, all variables must be explicitly declared prior to their use.

The SCRIPT language deviates a little further from SQL procedural languages by the fact that it supports variable

arrays. This makes the language a little more flexible, especially when a multitude of variables of the same type

need to be defined. The generic syntax of declaring an array of a certain variable is as follows:

 DECLARE @variable_name(n) data_type;

where n is any positive integer representing the number of array elements to be defined. Note that array indexing

in SCRIPT language is zero-based. The following are some examples of declaration of arrays of variables:

DECLARE @Names(10) varchar(50);

DECLARE @SSNums(10) char(9);

DECLARE @Ages(10) tinyint;

Observe that each of the array declaration in the example defines 10 indexed variable names, for example:

@Names(0), @Names(1), @Names(2), @Names(3), @Names(4), @Names(5), @Names(6), @Names(7), @Names(8),

@Names(9) for the first declaration, similarly for the other declarations.

We next describe the SCRIPT syntax for evaluation or assignment of an already declared variable. Essentially,

variable assignment is performed via the SET keyword, with the following generic syntax:

 SET @variable_name = value;

where variable_name is the declared variable's name, and value is any valid data value, validated with respect to

the data type of the variable. The following SCRIPT code sample illustrates the declaration and assignment syntax

for variables as well as variable arrays:

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 11

DECLARE @Last_Name varchar(20);

DECLARE @First_Name varchar(20);

DECLARE @SSNum char(9);

DECLARE @MonthlyBonus(3) money;

DECLARE @DOB smalldatetime;

DECLARE @AFGScore int;

SET @Last_Name = "EDISON";

SET @First_Name = "THOMAS";

SET @SSNum = "457678976";

SET @DOB = "9/11/1945"; // SCRIPT engine validates and interprets date-time properly

SET @AFGScore = 89;

SET @MonthlyBonus(0) = 230.59;

SET @MonthlyBonus(1) = 301.34;

SET @MonthlyBonus(2) = 450.44;

Observe the evaluation of the array variable @MonthlyBonus, especially the 0-based nature of the array index. In

particular, the array size is specified in the declaration, while the last array item's index is one less than the

declared array size.

It is important to note that a date-time data type variable is often evaluated via a string constant which represents

the desired valid date-time value (see the evaluation of @DOB variable). Internally, the SCRIPT engine will

automatically convert the constant string, representing date-time value, into a date-time value prior to processing.

Finally, we should emphasize that, in SCRIPT language, there are three alternative methods of assigning long

constant strings to a character data type variable. These methods are illustrated in the following sample code

segments:

// this first method concatenates the value with new strings to produce the long string

DECLARE @MyString varchar(2000);

SET @MyString = "The story of SCRIPT is an interesting one. ";

SET @MyString = @MyString + "It all started back in 1998 when we were commissioned to ";

SET @MyString = @MyString + "develop a text-based print engine for one of our clients.";

An alternative method to produce essentially the same logical output as this first method is as follows:

// this method concatenates the value with a single SET keyword usage (or statement)

DECLARE @MyString varchar(2000);

SET @MyString = "The story of SCRIPT is an interesting one. " +

 "It all started back in 1998 when we were commissioned to " +

 "develop a text-based print engine for one of our clients.";

A third alternative method is as follows:

// this third method illustrates the multi-line capability of constant strings

DECLARE @MyString varchar(2000);

SET @MyString = "The story of SCRIPT is an interesting one.

 It all started back in 1998 when we were commissioned to

 develop a text-based print engine for one of our clients.";

Observe that in this latest method, double-quote specification extends beyond a single line. The SCRIPT engine

will interpret these various assignment methods without any ambiguity.

Chapter 2

12 Copyright  2003-2004, Epsilon-Logic Systems

Operations on Data Types

In this section we will outline the details concerning the operators used in the SCRIPT language. In particular, the

SCRIPT language has numeric operations, string operations, comparison operations, logical operations, bit

operations, and the assignment operation.

The numeric operations consist of the following: +, –, *, /, %, respectively addition, subtraction, multiplication,

division and modulo operations. The addition, subtraction, multiplication and division operations are defined on

any numeric data type, including the bit, tinyint, smallint, int, real, float, numeric, smallmoney, money,

smalldatetime and datetime, while the modulo operation is applicable only to tinyint, smallint and int data

types.

Because of the fact that there are several numeric data types, and that these types of variables are often mixed

together in expressions built via numeric operations, it is necessary to address a few first order issues, such as:

� Precedence of operators in a mixed numeric expression

� Implicit conversion of data type in a mixed numeric expression before storing it in another variable

� Grouping subsections of a mixed numeric expression via parentheses

The precedence of numeric operators is as follows: first division, multiplication and modulo are applied and then

addition and subtraction. For example in the expression of the following code snippet,

DECLARE @a, @b, @c, @d int;

DECLARE @X, @Y, @Z, @W int;

SET @X = @a*@b + @c/@d; // do multiplication and division, and then the rest

SET @X = @a/@b*@c; // do division first and then multiplication

SET @Y = (@a*@b) + (@c/@d);

SET @Z = @a*(@b + @c)/@d; // force the addition and then do the rest

SET @W = -@a*+@b + @c; // first the unary minus and plus and then the rest

first, multiplication of @a and @b, as well as, division of @c and @d are performed, and then the addition of the

resulting sub-expressions is performed assigning it to @X. In essence, this is equivalent to the expression assigned

to the variable @Y, which distinguishes from the previous expression only by proper grouping of sub-expressions

via parentheses. Note also, that in the expression that is assigned to the variable @Z, the addition @b + @c is forced

by the parenthesis to be performed prior to the multiplication and division operations.

There are also the unary plus and unary minus operations applicable to all numeric data types, essentially changing

the sign value of an expression. For example, the last expression in the code snippet contains the sub-expression -

@a*+@b, which has two unary operations. The precedence of operators in this case is as follows: first unary plus or

unary minus operation must be performed, then multiplication or division, and then addition or subtraction.

Therefore, the last expression should be equivalent to the following expression @c - @a*@b.

The next issue that we will consider is the implicit conversion of mixed types used in a numeric expression. When

different numeric data types are used in a single expression, the SCRIPT compiler will automatically convert all

data types to the largest data type used in the expression, so that no numerical precision error occurs during the

evaluation of the expression. In the following example, prior to multiplication of @a and @b, variable @b is

implicitly converted to float type. This is because float types have larger storage space than int data types.

Similarly, before the addition is performed variable @c is also converted to float type.

DECLARE @a float;

DECLARE @b, @c, @X int;

SET @a = 37.89475;

SET @b = 11;

SET @c = 73;

SET @X = @a*@b + @c; // the value on the right side becomes 489.84225

 // but after assignment @X becomes 490

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 13

The example illustrates more than the implicit conversion mechanisms of the SCRIPT compiler. In particular, it

also demonstrates the implicit rounding mechanism of the SCRIPT compiler. Getting back to the example, observe

that the variable @X has type int, and it is being assigned to an expression which implicitly got converted to float

type. Clearly, the value of the expression on the right must be implicitly rounded to integer value before the left

side is assigned. This is precisely what happens when this code snippet is compiled and run by the SCRIPT engine.

So that, the float data type value 489.84225 is rounded to 490 when it is stored into @X.

For those of you who were a little unfortunate in college years and never had the chance to follow advance courses

in mathematics, the modulo operator is simply another way of expressing the remainder of integer divisions. So,

for example 57 % 7 = 1, which means 57 divided by 7 gives you a remainder of 1. This operator is quite handy

when there are periodic conditionals to be handled in some cases. For example, when checking parity of pages of a

long report, or following some calendar event that repeats in certain frequencies, as well as, many other such

similar situations.

We consider next the string operations. The only string operation is the string concatenation via the "+" operator.

Moreover, constant string literals are defined by delimiting text in between double-quote. The following sample

code illustrates all you need to know about string operations. Observe the various methods of assignment of long

strings, which were already described earlier in previous sections.

DECLARE @sStory varchar(500);

DECLARE @sBy varchar(50);

DECLAER @sResult varchar(2000);

SET @sStory = "The story of SCRIPT is an interesting one.

 It all started back in 1998 when we were commissioned to

 develop a text-based print engine for one of our clients.";

SET @sBy = " – SCRIPT's Architect";

SET @sResult = @sStory + @sBy;

We should emphasize that the concatenation operator applies particularly over string data types, these types are

char, varchar, nchar and nvarchar. If a non-string data type is concatenated with string type, then a run-time

type-mismatch error will occur when the report is run. We should also remark that the concatenation operator

applies to binary and varbinary types, with a binary interpretation of the specified string value. The following

table describes the possible combinations of the concatenation operations:

Combination Validation Storage

string_type + string_type Valid entry The concatenation of strings

string_type + numeric_type Type-mismatch error at run-time No effect

string_type + datetime_type Type-mismatch error at run-time No effect

string_type + unicode_string_type Valid entry The concatenation of strings in Unicode

string_type + binary_type Valid entry The concatenation in binary type

binary_type + binary_type Valid entry The concatenation in binary type

unicode_string_type + unicode_string_type Valid entry The concatenation of strings in Unicode

Now we dive into the subject of comparison operations in the SCRIPT language. Well, pretty much we have all

possible comparison operators, in fact, a little redundant too. These operators are: =, >, <, >=, <=, <>, !=, !>, !<,

respectively equal, greater, less, greater or equal, less or equal, not equal (alternate notation), not equal, not

greater, and not less. Note that there are two alternative notations for not equal operation. Also, we emphasize that

the equality comparison operator and the assignment operator cannot be confused in the SCRIPT language, since

an assignment equality operator is distinguished from the equality comparison operator by the fact that the SET

keyword precedes the statement of assignment.

Before dwelling into some examples regarding the comparison operations, it is crucial to also consider the logical

operations. The SCRIPT language has a complete set of logical operators consisting of the NOT unary operator, the

AND and OR binary operators, with the stated order of precedence. Here are some examples of usage of the

comparison, logical, as well as, other operators:

DECLARE @OddLine, @IsNegative BIT; // declaring multiple variables

DECLARE @Category VARCHAR(20);

Chapter 2

14 Copyright  2003-2004, Epsilon-Logic Systems

SET @Category = "UNKNOWN";

IF Amount < 0 AND @OddLine != 0 THEN

 SET @Category = "BAD CREDIT";

 SET @IsNegative = 1;

ELSE IF @OddLine = 0 OR Amount > 100

 AND NOT @IsNegative THEN // breaking line is OK

 SET @Category = "GOOD CREDIT";

 SET @IsNegative = 0;

ELSE

 SET @Category = "GIVE CREDIT";

END IF

SET @OddLine = NOT @OddLine; // applying unary negation to toggle value

Note that in the example code above we have used the conditional controls IF, ELSE IF, and ELSE. The syntax of

the conditional and iteration controls will be described in the next subsection.

Finally we consider the bit operations, essentially consisting of ~, &, |, ^, respectively the bitwise unary negation

operator, the bitwise and, or and xor (i.e. exclusive or) binary operators, with the stated precedence order. These

operators are applicable only on the integer data types, including bit, tinyint, smallint and int, with

respectively different results depending on variable's declared type. The definitions of these operators over the bit

data type are defined as follows:

 ~@b0 = 1
 ~@b1 = 0

for bitwise unary negation operator,

 @b0 & @b1 = 0
 @b1 & @b1 = 1
 @b1 & @b0 = 0
 @b0 & @b0 = 0

for bitwise and operator,

 @b0 | @b1 = 1
 @b1 | @b1 = 1
 @b1 | @b0 = 1
 @b0 | @b0 = 0

for bitwise or operator, and

 @b0 ^ @b1 = 1
 @b1 ^ @b1 = 0
 @b1 ^ @b0 = 1
 @b0 ^ @b0 = 0

for bitwise xor operator, where @b0 and @b1 are variables of bit data type, set to value 0 and @b1 set to value 1.

The following code sample illustrates the use of the bit operations:

DECLARE @b0, @b1, @W BIT;

SET @b0 = 0;

SET @b1 = 1;

SET @W = ~@b0 & @b1 | @b0 ^ ~@b1; // first apply the unary bitwise NEGATION operator,

 // then the bitwise AND operator on ~@b0 and @b1,

 // then the bitwise OR operator with @b0,

 // finally apply bitwise XOR operator with ~@b1,

 // the result becomes 1

We extend now the definitions of bit operations respectively over tinyint, smallint and int data types.

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 15

Basically, the operation is similar to the bit data type case, but applied over the bits of the value represented in

binary form. For example, in tinyint, the number 7 and 5 have binary representations 0000 0111 and 0000

0101, so that the ~, &, | and ^ operations yield the following:

 ~7 is computed by negating bitwise all the bits, which yields: 1111 1000, which is equal to 248,

 ~5 is computed by negating bitwise all the bits, which yields: 1111 1010, which is equal to 250,

 ~7 & 5, ~5 | 7 and 5 ^ 7 are computed by applying the bitwise operations over all the respective bits,

which yield respectively the values 0, 255 and 2:

 1111 1000 1111 1010 0000 0101
 & 0000 0101 | 0000 0111 ^ 0000 0111

 --------- --------- ---------
 0000 0000 1111 1111 0000 0010

In a very similar fashion the bit operations may be bitwise computed over 16-bits for smallint, and 32-bits for int

data types. For example, the values of the expressions ~7 & 5, ~5 | 7 and 5 ^ 7 in both integer types are

computed to yield respectively 0, -1 and 2.

Conditional and Iteration Controls

In the business world, even the simplest reports follow some sort of logical structure in which condition checking

and iteration are indispensable elements. In fact, any useful, down to earth report often contains sections consisting

of running totals, summaries, categories, groups and other such constructs. Sometimes such summaries are so

standard and hierarchical that standardized functions applied via graphic interfaces are extremely suitable for

accomplishing such tasks. In some other cases however, the summary or grouping logic is so arbitrary that a more

structural scripting approach becomes inevitably desirable and much more suitable. It is to this later cause that

SCRIPT language supports full conditional and iteration controls, essentially very similar to Visual Basic or MS-

SQL Server procedural languages.

The simplest version of the conditional control in SCRIPT language has the following IF-THEN form:

 IF statement THEN

result_statement_1;
result_statement_2;
...
result_statement_N;

 END IF

where result_statement_1, result_statement_2, ... , result_statement_N, form a sequence of resulting

actions. The most generic form of this conditional control contains optional one or more ELSE IF branches and an

optional ELSE branch, as is shown in the following generic example:

IF statement_1 THEN

result_statement_1;
result_statement_2;

 ELSE IF statement_2 THEN
result_statement_3;

 ELSE IF statement_2 THEN
result_statement_4;
result_statement_5;

 ELSE
result_statement_6;
result_statement_7;

END IF

Recall that we have already illustrated the use of this more general form of the conditional control in the code

example for the comparison operators, outlined earlier in this section.

In addition to the IF-ELSE IF-ELSE conditional, SCRIPT language has an expression level CASE conditional very

similar to the MS-SQL Server's simple case syntax. The syntax of simple CASE-WHEN-ELSE expression conditional is

as follows:

 CASE in_expression
 WHEN in_expression_value_1 THEN out_expression_1
 WHEN in_expression_value_2 THEN out_expression_2
 ELSE out_expression_3

Chapter 2

16 Copyright  2003-2004, Epsilon-Logic Systems

 END CASE;

Where in_expression is the input expression, in_expression_value_1 and in_expression_value_2 are input

expression's possible values, out_expression_1, out_expression_2 and out_expression_3 are respective output

expressions. We should emphasize that at least one WHEN-phrase is required in the syntax of the simple CASE, and

that the ELSE-phrase is optional and may be omitted if not needed. Also, observe that this conditional is defined on

expressions and not on logical statements. In fact, the whole CASE construct is itself a single statement, as is

apparent from the single semi-colon at the end of the END CASE keyword. We illustrate next the usage of this simple

CASE conditional in the following:

DECLARE @nCode INT;

DECLARE @vCode VARCHAR(10);

SET @vCode = "CABINET"; // this line is just for test

// a translation from character codes to integer values

SET @nCode = CASE @vCode

 WHEN "CABINET" THEN 1100

 WHEN "CLOSET" THEN 1103

 WHEN "GARAGEDOOR" THEN 2145

 WHEN "OFFICEDESK" THEN 3452

 ELSE 1000

 END CASE;

// at this point the value of @nCode becomes 1100

Finally, in SCRIPT language the iteration control is defined by the WHILE, END LOOP, CONTINUE and BREAK

keywords. The general syntax is as follows:

 WHILE check_statement
 statement_1;
 statement_2;
 ...
 statement_N;
 END LOOP

where check_statement is the statement on which the iteration is defined, and statement_1, statement_2, … ,

statement_N are statements applied per iteration. Moreover, the BREAK keyword is used to conditionally exit the

loop from inside, and the CONTINUE keyword is used to jump to the next iteration from the current location inside

the loop. The following code snippet illustrates the use of the iteration control:

// The following code generates the content of a calendar month

DECLARE @i, @nDay INT;

DECLARE @nOffset SMALLINT;

DECLARE @vA(42) VARCHAR(200);

DECLARE @dFD, @dTmp DATETIME;

// get the correct date of the first day of the current month

SET @dFD = ToDate(Format(GetDate(), "yyyy-mm-01"), "yyyy-mm-dd");

// find the day of the week of the date @dFD

SET @nOffset = CAST(Format(@dFD, "w") AS INT);

// loop over the days and fill the array @vA

WHILE @i < 50

 // initialize value to the HTML space character

 SET @vA(@i) = " ";

 // all cells before the 1st day should be filled with space

 IF @i >= @nOffset-1 THEN

 // add @nDay to @dFD date

 SET @dTmp = DateAdd(Day, @nDay, @dFD);

 // if new value is in the current month get the day

 IF DatePart(MM, @dTmp) = DatePart(MM, @dFD) THEN

 SET @vA(@i) = Format(@dTmp, "d");

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 17

 END IF

 // for the current day, highlight cell with yellow background

 IF Format(@dTmp, "yyyy-mm-dd") = Format(GetDate(), "yyyy-mm-dd") THEN

 SET @vA(@i) = "<SPAN style='background-color:#FFFF00'" +

 @vA(@i) + "";

 END IF

 SET @nDay = @nDay + 1;

 END IF

 SET @i = @i + 1;

 IF @i = 42 THEN

 // exit loop if we get to 42 days (i.e. 7x6 month calendar)

 BREAK;

 END IF

END LOOP

Observe that the above code sample included several functions that we have not yet explored, namely: ToDate,

Format, GetDate, Cast, DateAdd, and DatePart. We will define the details of these functions later in this chapter.

Also, observe that the iteration is actually creating HTML segments containing the day's number, and for the

current day it highlights the cell yellow via the tags. It is not hard to see that this code sample may be used

to generate nice looking calendars in HTML format. We will get back to this sample later in the "Functions and

Macros" subsection.

Datasource Object and FLD-tag

A data oriented report tool without a data source support is not worth using. The SCRIPT language comes with

built-in data connection, data source, data shape and XML objects, for retrieval of data from various data stores.

These objects behave more like data objects contrast to the basic data types. In particular a variable may be

declared of such data object type, and inherit all properties and methods of these object types.

In this section we will only describe the DATASOURCE object, deferring the rest to later sections in this chapter.

Variable declaration for the DATASOURCE object is as follows:

 DECLARE @variable_name DATASOURCE;

where variable_name is the name of the variable of data source type. Such objects will inherit all properties and

methods of the internal data source object, which we list next:

 Connect(CONNECTION objConn) function to define the data connection for the data source, if this function is

never called for a particular DATASOURCE object, then the default connection

of the report engine will be assumed. The argument must be an object of

CONNECTION type (which will be described later in this chapter).

 Column(VARCHAR FieldName) function to return the value of a particular field of the data source, returns a

data type depending on the data type of the field in the backend database

server. The argument must be a VARCHAR string representing a valid name of

the field or alias of the field.

 Child(VARCHAR FieldName) function to return the data shape object defined by a field in the original

data shape command with respect to the backend database server. The

argument must be the name of a valid field or alias name in the data shape

command.

 EOF() function to return bit value representing end of file mark of the recordset

defined by the data source.

 Next() function to advance the recordset cursor one record ahead.

 Reset() function to reset the recordset cursor to empty and reopen the recordset

defined by the latest SET call for the data source object.

The following code snippet describes the usage of the data source object:

<html>

<body>

Chapter 2

18 Copyright  2003-2004, Epsilon-Logic Systems

// put report settings and other elements here...

// set the font to Arial 8pt

<ELS> // contain pure SCRIPT in <ELS>-tags

DECLARE @ds DATASOURCE;

DECLARE @nRecCount INT;

// set or define the data source

SET @ds = "SELECT OrderID, OrderDate, ShipVia, ShipName AS SName, " +

 "ShipCity AS SCity, ShipCountry AS SCountry " +

 "FROM Orders " +

 "WHERE ShipVia > 2";

// iterate over the recordset, note that the cursor opens automatically

WHILE NOT @ds.EOF()

</ELS> // switch the <ELS> tag off to specify HTML code or fields

 Order Date: <FLD>@ds.Column("OrderDate")</FLD>

 Ship Name: <FLD>@ds.Column("SName")</FLD>

 Ship City: <FLD>@ds.Column("SCity")</FLD>

 Ship Country: <FLD>@ds.Column("SCountry")</FLD>

<ELS> // get back into <ELS>-tag to specify the rest of the loop

 // advance by one record

 @ds.Next();

 // increment the record count

 SET @nRecCount = @nRecCount + 1;

END LOOP

</ELS> // get out of SCRIPT code into the HTML code

<hr>

Total Number of Records: <FLD>@nRecCount</FLD>

</body>

</html>

We list a few records from the resulting output to this code sample:

Order Date: 1996/07/04 00:00:00.000
Ship Name: Vins et alcools Chevalier
Ship City: Reims
Ship Country: France

Order Date: 1996/07/12 00:00:00.000
Ship Name: Richter Supermarkt
Ship City: Genève
Ship Country: Switzerland

Order Date: 1996/07/16 00:00:00.000
Ship Name: HILARION-Abastos
Ship City: San Cristóbal
Ship Country: Venezuela

Since this sample code is a little involved, we find it necessary to give a more detailed exposition, essentially

stepping through each line of the sample code. The first basic observation is the fact that the SCRIPT language,

just like any web script language, may be mixed with HTML code. In particular, part of this sample illustrates how

pure SCRIPT code may be mixed with HTML in a natural nested fashion, with the whole report code contained in

<HTML> tags, resembling an HTML document.

We begin with the tags that wrap around the SCRIPT code, in effect, defining the typeface for the resulting

output. The next line of the code opens an <ELS> tag to switch to pure SCRIPT code. The data source variable @ds

is declared as a DATASOURCE object, along with other variable declarations. The data source variable @ds is then set

to the desired SQL statement, which may have alias names, and could be any valid query statement based on the

backend database server's language. Note that the SQL statement is included as a character string, and that the

double quotes must surround it, just like any character value specification. This will inform the SCRIPT engine to

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 19

treat this SQL statement as a constant character string value (and therefore, skip compiling this segment).

Then we loop over the recordset defined by this data source. In particular, observe how the EOF() and Next()

methods are used. To output text we switch mode to HTML via the </ELS> tag, in which HTML code segment or

recordset field values are put via the <FLD> tags of SCRIPT language. In particular, observe how the Column()

function is used with arguments being field names or alias names of fields. The HTML tag makes the field

labels in bold font style, while
 is the HTML to break the line of text. The mode switches back to pure

SCRIPT code via the <ELS> tag, followed by the Next() function call to advance the recordset cursor by one

record. Then the record count is incremented and the loop continues. At the end of all records, the mode switches

back to HTML, and the HTML <hr> is put to add a horizontal line in the output. Then the total number of records

is put via the <FLD> tags.

In the sample code above we have already utilized the <FLD> tag of the SCRIPT language, which we will need to

explain next. In particular, the <FLD> tag is used to put the result of any expression or field into the report output as

HTML segment. It can be used only outside pure ELS sections, that is, outside the <ELS>, <ELS_QPARAMS>,

<ELS_RSETTINGS> and <ELS_OPROCS> tag sections. Getting back to the code sample, observe for example, that the

</ELS> tag switches the scope of pure ELS section off, and that it is outside this <ELS> tag section where the <FLD>

tags are used.

The content of the <FLD> tag must be pure ELS elements, which may consist of valid SCRIPT expressions or data

fields. Moreover, the main function of the <FLD> tag is to convert the run-time value of any valid SCRIPT

expression to the character string representation, to be put as HTML segment into the report output.

The SCRIPT Editor
To boldly go where no human has gone before, you will need the SCRIPT Editor, which comes with the SCRIPT

compiler. In this section we will describe most of the important details concerning the utilization of the SCRIPT

Editor module included in the Report Designer application. In particular, we will begin with an exposition of the

GUI features, including the menu commands, toolbars, various satellite dialogs and windows. We will then

describe the following functions or edit operations:

� Creating a new report via the standard report templates, and maintaining it entirely in Source view of the

editor

� Defining the report settings parameters via the Report Settings dialog and the Source view

� Defining data source and using the Data Fields and the Expression Builder to insert data fields and

expressions into the Source view

� Performing basic edit operations, as well as, compiling and running the report

Using the Editor

The SCRIPT Editor is the ultimate place to be when flexibility and precision are the top priority issues in the

making of a report. It is the sanctuary, the ultimate refuge of the script oriented developer, whose daily thoughts

and ideas are full of nightmares concerning ASP, VB or Java scripting mixed with DHTML code. As we have

already learned that SCRIPT language behaves very similar to mixed scripting languages, conforming its content

or functionality via tags, just like other scripting languages, over the domain of HTML code. More concisely, they

regenerate and manipulate the elements of the underlying HTML document structure in possibly almost unlimited

combinations. The only difference from the other scripting languages is the fact that the SCRIPT language code is

intended to be deployed at run-time in a compiled binary form. In this way, no time is lost in parsing the syntax of

SCRIPT segments when the report output generation is triggered. Moreover, part of main tasks of the compilation

process is to optimize SCRIPT instructions, as well as, HTML elements into a binary structure, in such a way, so

that the report generation process becomes extremely fast and least resource consuming.

We will begin the description of the features of the SCRIPT Editor by outlining the menu commands together with

the corresponding toolbars. Recall that the menu bar of the Report Designer application consists of the File, Edit,

View, SQL, Insert, Format, Position, Table, Build, Tools, Windows and Help main menus. The File menu

contains the following menu items:

 New Project... Ctrl+N this will call the New Project dialog,

 Open Project... Ctrl+O this will call the Open Project dialog,

Chapter 2

20 Copyright  2003-2004, Epsilon-Logic Systems

 Close Project this will close the currently open project,

 New Report... this will call the New Report window,

 Open Report... this will call the Open ELS Report File dialog,

 New SQL Script this will create a new instance of SQL script window into the SQL Editor,

 Open SQL Script... this will call the Open Query File dialog,

 New DB Connection... this will call the New Database Connection dialog,

 Add To Project... this will call the Add to Project dialog,

 Remove From Project this will remove the selected file from the Project Explorer view,

 SQL Dictionary... F12 this will call the SQL Dictionary window,

 Save Ctrl+S this will save the changes made to the currently open report script,

 Save All this will save changes made to all open report files,

 Save As ... this will call the Save ELS Script dialog,

 Save HTML ... this will call the Save HTML Output dialog,

 Print ... Ctrl+P this will call the Print dialog to print the content of Source view,

 Print Current Page this will print the report output page displayed in the report viewer,

 Print Preview this will display the content of Source view in a preview window,

 Page Setup ... this will call the Page Setup dialog to setup page for printing source,

 Report Settings ... this will call the Report Settings dialog,

 Recent Files ► keeps a list of recently opened report files,

 Recent Project ► keeps a list of recently opened projects,

 Exit exits the application.

The Edit menu contains the following menu items:

 Undo Ctrl+Z this will undo last edit operation,

 Redo Ctrl+Y this will redo the last undone operation,

 --

 Cut Ctrl+X this will cut the current selection and copy it into the clipboard,

Copy Ctrl+C this will copy the current selection into the clipboard,

 Paste Ctrl+V this will paste the content of the clipboard into the cursor location,

 --

 Select All Ctrl+A this will select all text in the Source view,

 --

 Find... Ctrl+F this will call the Find dialog,

Find in Files... this will call the Find In Files dialog,

 Replace... Ctrl+H this will call the Replace dialog,

 --

 Toggle Bookmark Ctrl+F2 this will toggle the bookmark for the current line,

 Next Bookmark F2 this will shift the view of Source view to the next bookmark,

 Previous Bookmark Shift+F2 this will shift the view of Source view to the previous bookmark,

 Clear All Bookmarks Ctrl+Shift+F2 this will clear all current bookmarks,

 Clear All Breakpoints this will clear all breakpoints in the active report script,

 --

 Advanced ► this menu has two submenus to change the letter case of the

selected.

The Advanced menu item has the following two child menus:

Make Selection Lower Case Ctrl+U this will make the selected text all in lower case,

 Make Selection Upper Case Ctrl+Shift+U this will make the selected text all in upper case.

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 21

The View menu contains the following menu items:

 Toolbars... this will call the Customize dialog for toolbar setup,

 Project Explorer Ctrl+E this will toggle the visibility of the Project Explorer pane,

 Properties/Data View Ctrl+D this will toggle the visibility of the Properties pane,

 Status Bar this will toggle the visibility of the status bar line,

 Full Screen this will maximize the active view to full screen,

 --

 Text Size ► this consists of submenus to change the text size in the viewer,

 --

 Options... this will call the Options dialog.

The SQL menu is destined for SQL query operations, and therefore many of the items of this menu are not

applicable when the Source view is active. In fact, the only applicable menu items are the following:

 New Query ► this consists of submenus to create various kinds of queries,

 New Data Shape... this will slide on the Data Shape sliding window,

 ... other menu items ...

 SQL Dictionary... this will call the SQL Dictionary window,

where the New Query menu has the following submenus:

 SELECT... this will open an instance of query window in SELECT command mode,

INSERT... this will call the Insert Into Table dialog to start an INSERT query,

INSERT VALUES... this will open an instance of query window in INSERT VALUES command mode,

UPDATE... this will open an instance of query window in UPDATE command mode,

DELETE... this will open an instance of query window in DELETE command mode,

Make Table... this will call the Make Table dialog to start a CREATE query mode.

The Insert menu contains the following menu items:

 Break this will insert a
 HTML tag at the cursor location,

 Rule this will insert a <HR> HTML tag at the cursor location,

 New Paragraph this will insert an empty <P></P> HTML paragraph at the cursor location,

 New Section this will insert an empty <DIV></DIV> HTML section at the cursor location,

 Append New Section Ctrl+W this will append an empty new section at the end of the current section,

 Special Symbols... this will call the Special Symbols dialog,

 Picture... this will call the Select Image File dialog,

 Background Image... this will call the Select Background Image dialog,

 HTML Table... this will call the Insert Table dialog,

 ELS Row... this will call the Insert ELS-Row dialog

 ELS Shape... this will call the Insert ELS-Shape dialog,

 Expression Builder... this will call the Expression Builder window,

 Data Fields... this will call the Data Fields window,

ActiveX Control... this will call the Insert ActiveX Control dialog,

We should emphasize that whereas the New Section menu item just inserts the string <DIV></DIV> at the current

cursor location, the Append New Section menu item, on the other hand, inserts the HTML DIV-element with

complete style attributes, and that this insertion is at the end of the currently selected report section. For example,

if the current cursor's position is inside the ELS_RDETAIL section, then the insertion will be just before the

</ELS_RDETAIL> end tag. In general, for sections ELS_QPARAM, ELS_OPROCS, ELS_RSETTINGS and

ELS_RDETAIL, the Append New Section menu's insertion will be at the end of the ELS_RDETAIL section just

before the </ELS_RDETAIL> end tag. For ELS_RHEADER section, this insertion will be at the end of the

Chapter 2

22 Copyright  2003-2004, Epsilon-Logic Systems

ELS_RHEADER section just before the </ELS_RHEADER> end tag. For ELS_RFOOTER section, this insertion will

be at the end of the ELS_RFOOTER section just before the </ELS_RFOOTER> end tag. Similarly, for

ELS_PHEADER or ELS_PFOOTER sections, this insertion will respectively be at the end of the ELS_PHEADER

or ELS_PFOOTER sections, and respectively, just before the </ELS_PHEADER> and </ELS_PFOOTER> end tags.

Moreover, the string that is inserted by the Append New Section menu command will have the following form:

 <DIV style=font_attributes></DIV>

where the font_attributes is the style attributes of the default typeface for the current report section obtained

from the settings in the Options dialog. For example, if in the Options dialog the report detail section is set to

have Trebuchet MS Bold 8pt typeface with blue text color, then if the user puts the cursor anywhere in the

ELS_RDETAIL section, and triggers the Append New Section menu command the resulting appended string will

be as follows:

 <DIV style="font-family:Trebuchet MS; font-size:8pt;

font-style:bold; color:blue"></DIV>

The Format and Position menus have items that do not apply to the SCRIPT Editor module, while the only

applicable menu item in the Table menu is the Insert ELS Line menu item. This menu command will call the

Insert ELS Line dialog, with which one may insert a special kind of ELS Line element (to be described soon).

The Build menu contains the following menu items:

 Compile this will trigger the compilation of the current report script,

 Cancel this will stop any active compilation process,

 Build this will trigger the build of all the report scripts in the current project,

 Debug this will activate the debugging process for the current report script,

 Go F6 this will run the report generation process till the next debug breakpoint,

 Step Over F10 this will process the next statement in the script,

 Run this will run the report generation process,

 Stop this will stop any active report generation process,

 First Page this will display the first page of the report output,

 Previous Page this will display the previous page of the report output,

 Next Page this will display the next page of the report output,

 Last Page this will display the last page of the report output.

Finally, the Tools menu contains the following menu items:

 Connection / Datasource List... this will call the Connection/Datasource List window,

 Parameter List... this will slide on the Parameter List sliding window,

 Query Form... this will slide on the Query Form sliding window,

 Precision Resizer... this will call the Precision Resizer window,

 Show Report Wizard this will make an active SRT Wizard window visible,

 Edit SQL Dictionary... this will call the SQL Dictionary in edit mode,

 Transform this will be used to transform between SCRIPT and RDL reports.

Now, we outline the toolbars of the Report Designer application that are relevant to the SCRIPT Editor. In

particular, the designer application has the following predefined toolbars: Project Explorer, Compile, Navigate,

HTML, Borders, SQL, Report Design, Position and Table toolbars. Of these, only the Project Explorer,

Compile, Navigate and Report Design toolbars are applicable to the SCRIPT Editor.

Figure 2.1.Figure 2.1.Figure 2.1.Figure 2.1. Showing the Project Explorer toolbar

The Project Explorer toolbar consists of the following command buttons (see Figure 2.1):

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 23

 New Project this will call the New Project dialog (same as the New Project menu),

 Add Item this will call the Add to Project dialog (same as the Add to Project menu),

 - - - - - - - - - - - - - - -

 Open this will call the Open ELS Report File dialog (same as the Open Report menu),

 Save this will save the changes made to current report script (same as the Save menu),

 Save All this will save the changes to all open report files (same as the Save All menu),

 - - - - - - - - - - - - - - -

 Print this will call the Print dialog (sane as the Print menu),

 Page Setup this will call the Page Setup dialog (same as the Page Setup menu),

 Preview this will preview the content of Source view (same as Print Preview menu),

 Print Current Page this will print the current output page (same as the Print menu),

 - - - - - - - - - - - - - - -

 Cut this will cut the selected text retaining a copy in the clipboard (same as Cut menu),

 Copy this will copy the selected text into the clipboard (same as Copy menu),

 Paste this will paste the content of the clipboard into Source view (same as Paste menu),

 - - - - - - - - - - - - - - -

 Undo this will undo the last edit action (same as Undo menu),

 Redo this will redo the last undo operation (same as Redo menu),

 Toggle Bookmark this will toggle the bookmark of the current line (same as Toggle Bookmark menu),

 - - - - - - - - - - - - - - -

 Search a combo-box used for search text entry, the user must click the Enter key to start

search, subsequent searches of the same keyword may be performed via F3 key,

 Find In Files this will call the Find In Files dialog (same as Find In Files menu),

 - - - - - - - - - - - - - - -

 Project Explorer this will open (or set focus on) the Project Explorer pane (same as Project

Explorer menu),

 Properties this will open (or set focus on) the Properties pane (same as Properties/Data View

menu),

 Show/Hide Results Pane this will show / hide the Results pane,

 - - - - - - - - - - - - - - -

 Cascade Windows this will cascade all open windows

 Tile Windows Vertical this will tile all open windows vertically,

 Tile Windows Horizontal this will tile all open windows horizontally,

Figure 2.2.Figure 2.2.Figure 2.2.Figure 2.2. Showing the Report Design toolbar

The Report Design toolbar consists of the following command buttons (see Figure 2.2):

 Design View this will display the current report in Design view,

 Code View this will display the current report in Source view,

 - - - - - - - - - - - - - - -

 Open this will open the currently selected report in the Project Explorer pane,

 - - - - - - - - - - - - - - -

 Insert ELS Row this will call the Insert ELS-Row window (same as ELS Row menu),

 Insert ELS Shape this will call the Insert ELS-Shape window (same as ELS Shape menu),

 Insert HTML Table this will call the Insert Table window (same as HTML Table menu),

 Insert Image this will call the Select Image File dialog (same as Picture menu),

 Insert Expression this will call the Expression Builder window (same as Expression Builder menu),

 Insert Date Fields this will call the Data Fields window (same as Data Fields menu).

Figure 2.3.Figure 2.3.Figure 2.3.Figure 2.3. Showing the Compile and Navigate toolbars

The Compile / Navigate toolbars consist of the following command buttons (see Figure 2.3):

 Compile ELS-file this will compile the current ELS-file (same as Compile menu),

Chapter 2

24 Copyright  2003-2004, Epsilon-Logic Systems

 Cancel this will cancel any active compilation process (same as Cancel menu),

 Run this will trigger the report generation process (same as Run menu),

 Stop this will stop any active report generation process (same as Stop menu),

 - - - - - - - - - - - - - - -

 First Page this will display the first page of the report output (same as First Page menu),

 Previous Page this will display the previous page of the report output (same as Previous Page

menu),

 Move To edit-control, to enter page number abd press the Enter key to jump to the page,

 Move To Page an edit-box to enter page number, the user must click Enter key to jump to that

page,

 Next Page this will display the next page of the report output (same as Next Page menu),

 Last Page this will display the last page of the report output (same as Last Page menu).

We describe next two popup menus that are relevant to the SCRIPT Editor, namely, the Source view and the

Project Explorer pane popup menus. The Source view popup menu consists of the following menu items:

 Undo this will undo the last edit action,

 Redo this will redo the last undo operation,

 Cut this will cut the selected text and copy it to clipboard,

 Copy this will copy the selected text into the clipboard,

 Paste this will paste the content of the clipboard into the Source view,

 Select All this will select the whole content of the Source view,

 Select for Auto-Align this will select the current line into the Auto-Align dialog,

 Open Document this will open the URL or path that is selected in the Source view,

 Show IntelliSense F5 this will show the IntelliSense corresponding to the selected context,

 Parameter Info this will show the parameter structure of the selected object in tool-tip,

 List Report Settings this will list the report settings parameters,

 List CSS Properties this will list the Cascaded Style Sheet properties,

 Add/Move To Section ► this menu consists of submenus for each report section,

where the submenus of the Add/Move To Section menu item are as follows:

 ELS_RDETAIL this will move the cursor position to the ELS_RDETAIL section,

ELS_PHEADER this will move the cursor position to the ELS_PHEADER section,

 ELS_PFOOTER this will move the cursor position to the ELS_PFOOTER section,

 ELS_RHEADER this will move the cursor position to the ELS_RHEADER section,

 ELS_RFOOTER this will move the cursor position to the ELS_RFOOTER section,

ELS_RSETTINGS this will move the cursor position to the ELS_RSETTINGS section,

 ELS_QPARAMS this will move the cursor position to the ELS_QPARAMS section,

 OnBeginPage this will move the cursor position to the OnBeginPage event handler section,

 OnEndPage this will move the cursor position to the OnEndPage event handler section,

 OnBeginReport this will move the cursor position to the OnBeginReport event handler section,

 OnEndReport this will move the cursor position to the OnEndReport event handler section.

 OnSendMessage this will move the cursor position to the OnSendMessage event handler section.

The Project Explorer pane's popup menu, relative to ELS-file objects in the tree-view, consists of the following

submenus:

 Add Item... this will call the Add to Project dialog (same as Add to Project menu),

 New... this will call the New Report dialog (same as New Report menu),

 Open this will open the report selected in the Project Explorer pane,

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 25

 Properties... this will call the Project Properties dialog, when activated from the project node,

 Rename this will make the selected node's name editable, so that the user may change the name,

 Remove this will remove the selected object from the project,

 Copy this will copy the object into the clipboard,

 Paste this will paste objects that may exist in the clipboard into the project,

 Allow Docking this will toggle the mode of the pane docking or non-docking,

 Hide this will hide the Project Explorer pane.

The SCRIPT Editor comes with full IntelliSense support making the SCRIPT language extremely intuitive to use.

This service helps the user by automatically popping up selection lists, with content depending on the context.

Sometimes it is necessary to force the IntelliSense to show such lists on demand. This may be achieved via the

popup menu or with the F5 shortcut key. Similarly, to see the parameter information of a function entered in the

Source view, one may use the Parameter Info menu item from the popup menu.

It is perhaps more suitable to describe the various windows and dialogs of the Report Designer along with a

sample application, rather than just listing all features like a reference. We will use this approach in the next

section titled "A Simple Example". But before we delve into that realm we should describe the role of the Options

dialog (see Figure 2.4).

Figure 2.4.Figure 2.4.Figure 2.4.Figure 2.4. Showing the Options dialog (may need update)

The Options dialog is where all the global user preference parameters are defined, including the SCRIPT Editor

preferences for syntax coloring, the default typeface of each report section, as well as, default data formats and

other options. This dialog has the Format, Data and Other tabs. The Format tab contains the following controls:

 Category list-box, which contains the following module category items:

 SQL Editor,

 SQL Result,

 Query Builder Editor,

 Query Builder Result,

 Data Shape Builder Editor,

 Data Shape Builder Result,

 SCRIPT Editor,

 Page Header,

 Page Footer,

 Report Header,

 Report Detail,

Chapter 2

26 Copyright  2003-2004, Epsilon-Logic Systems

 Report Footer,

 Reset All button, which is used to reset all the options in this tab to the factory setting,

 Choose Font button, which is used to set the typeface of the selected category via the Font dialog,

 Font display field, which shows the selected font,

 Size display field, which shows the selected typeface size,

 Colors list-box, which is used to define the colors of syntax primitives, which are listed next:

 Text,

 Text Selection,

 Number,

 Tag Delimiter,

 Comment,

 Element,

 String,

 Attribute Name,

 Constants,

 Predefined Variable,

 Keyword Tag,

 Keyword Declaration,

 Keyword Statement,

 Control Type,

 Data Type,

 Foreground popup list-box, which is used to change the foreground color of elements defined by the

selection in the Colors list-box,

 Background popup list-box, which is used to change the background color of elements defined by the

selection in the Colors list-box,

 Sample display field, containing sample of text showing the effects of the selected options.

In particular, to change the syntax coloring configuration for the SCRIPT Editor, the user must select the SCRIPT

Editor in the Category list-box, and then set the colors of the respective keywords or elements of the SCRIPT

language. To change the typeface (or default typeface) of the selected category the user must click the Font button.

This will call the Font dialog, in which the user may select the desired typeface, font style and font size.

Figure 2.5.Figure 2.5.Figure 2.5.Figure 2.5. Showing the Data tab of the Options dialog

The Data tab of the Options dialog is where the default formatting for each data type is defined. This tab applies

only to the following categories: Page Header, Page Footer, Report Header, Report Detail and Report Footer. You may

disable the application of this automatic default formatting by making the Apply Formatting (by default) check-

box unchecked. This action will disable all the controls in this tab, and will not use automatic formatting whenever

data fields or expressions are inserted into the report.

If automatic formatting is enabled, the user may change the default format for any of the data types listed in the

Data tab by clicking on the corresponding 3-dotted button. This will prompt the Format/Conversion Wizard

dialog in which the user may set the desired format (see Figure 2.6 for more details). Depending on the selected

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 27

data type, the Expression Type, Decimal Places and Format control will be pre-selected. The user then may set

the desired formatting by either selecting a standard format from the Format combo-box, or manually enter a valid

format specification. We will describe the details of the Format function and the rules of format specification later

on in this chapter. For now, all we need to use is the factory set default formatting, as shown in Figure 2.5 for each

data type.

Figure 2.6.Figure 2.6.Figure 2.6.Figure 2.6. Showing the Format / Conversion Wizard dialog

The Other tab of the Options dialog contains some global options for the Report Designer application to control

the behavior of the following features:

 Enable Intellisense check-box to enable/disable IntelliSense in the Source

view and other related editors. By default this feature is

enabled.

 Make Source default view check-box to set the Source view as the default view

when the user initially opens a report script. By default

the Design view is selected, but it is recommended to

check this check-box for advanced reports.

 Use ADO bound grid to display query results check-box to use the ADO data-bound grid for the query

result display. By default this check-box is checked.

 Make query results directly editable check-box to enable direct data editing from the query

results. By default this check-box is unchecked.

 Query command timeout edit-box to adjust the default query command timeout in

seconds. By default this value is 0, which means indefinite

time or no timeout restrictions.

Figure 2.7Figure 2.7Figure 2.7Figure 2.7.... Showing the Other tab of the Options dialog

A Simple Example

In this section we will give an introductory tutorial on how to use the SCRIPT Editor to create and maintain a

simple report. Along the way, we will outline details about various GUI windows and dialogs and their respective

usage. In particular, we will describe details about the Project Explorer pane, the Data View pane, the New

Report dialog, the Report Settings dialog, the New Database Connection dialog, the Query Builder window,

Chapter 2

28 Copyright  2003-2004, Epsilon-Logic Systems

the Insert Table dialog, the Data Fields and Expression Builder windows.

We start by creating a new report project, which may be achieved by selecting the New Project menu item of the

File menu, or alternatively clicking on the New Project toolbar button. This will display the New Project dialog,

prompting the user for a project name. Enter a name for your first project in the Project name edit-box, for

example type MyProj1. Observe that as you are typing this name, the Location edit-box will duplicate this name as

a subdirectory to the current working directory, so that your report files will be located by default in the

\MyProj1\REPORTS\ subdirectory, while the project file, MyProj1.RPJ, will be located by default in the \MyProj1\

subdirectory. After entering and submitting the New Project dialog, this new project is opened in the Project

Explorer pane (see Figure 2.8).

Recall that the Project Explorer pane displays various elements that together form a collection of files used in the

report module of your host application. In particular, it may include various SQL queries used in your reports, the

corresponding database connections, the image and XML data file references, as well as, the SCRIPT report files

themselves.

Figure 2.8Figure 2.8Figure 2.8Figure 2.8.... Showing the Project Explorer pane

A report project essentially consists of report and database files. The report

files are essentially SCRIPT files with .ELS file extension. As we indicated

that these files will be stored in the default \REPORTS subdirectory inside

the project's root directory. Each database connection in the project will

have a separate database file. These database files, which are files with

.AUX file extension, will essentially contain all the queries and data shapes

that are used in the project under that connection object.

In addition to these files, a report project may also contain SQL script files.

These are essentially text files with the .SQL file extensions, presumably to

store SQL scripts used in the project.

Observe that in the Project Explorer pane, the report files will be shown

under the MyProj1 root node, while the SQL and database files will be

shown under the corresponding connection object in the Database root

node.

The Project Explorer pane has a special toolbar, which consists of the

Design, Source and Parameter List toolbar buttons. The Design and

Source toolbar buttons will respectively open or display the selected report

in Design or Source view, while the Parameter List buttons will slide on

the Parameter List windows.

In the next few paragraphs we will use the popup menu of the Project Explorer pane to create a new report, as

well as, new database connection and queries for the new report. We will then use the drag-drop capabilities of the

pane to drop the defined queries into the report script.

To create a new report we click the right-mouse-button on the MyProj1 node. This will open the Project Explorer

pane's popup menu. From this menu select the New menu command, to call the New Report dialog, in which the

user must enter the name of the new report and select the creation method.

Note that the New Report dialog has three radio-buttons for the different methods of report creation. These radio

buttons along with other controls of the New Report dialog are listed next (see also Figure 2.9 for more details):

 Report Name edit-box, to enter the name of the report file,

 Use Standard Template Wizard radio-button, to select a template from the standard report template

library, this button is selected by default,

 Use Binary Report Template radio-button, to select a binary report template BRT-file,

 Custom radio-button, to select an empty custom report template,

 Cascade Style Sheet frame, from which to select a CSS (i.e. Cascade Style Sheet).

To continue the creation of the new report, note that the Use Standard Template Wizard radio-button is selected

by default. Leaving this option as is, enter a report name, say Report1, and then click the OK button to submit this

dialog. The Use Standard Template Wizard radio-option selection will result in opening the Select Standard

Template window, from which you must select an existing standard report template. On the right side of this

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 29

window, click on the Custom group arrow to open the folder. Depending on the content of your standard report

template library, you must have a BASIC01 template under this folder. Selecting this BASIC01 template submit this

window by clicking on the OK button.

Figure 2.9Figure 2.9Figure 2.9Figure 2.9.... Showing the New Report dialog

The selection in the Select Standard Template window will call the SRT Wizard window with the BASIC01

standard report template activated. In this standard report template wizard, note that you can modify the report

title, the page orientation and size, the page margins, along with some basic elements. For now, we leave all the

defaults as they are and click on the OK button of this window. This action will create the Report1.ELS report script

and open it into the SCRIPT Editor window (i.e. Source view of the Report Designer, see Figure 2.10 for details).

Observe that the standard template that we selected already created the necessary report sections including the

ELS_RSETTINGS, ELS_QPARAMS, ELS_RHEADER, ELS_PHEADER, ELS_RDETAIL, ELS_PFOOTER and

ELS_RFOOTER sections. Observe also, that moat of these sections are imbedded inside the HTML <BODY> and

</BODY> tags, with the <HTML> and HTML <HEADER> declarations at the beginning of the script document. So that

anything outside pure SCRIPT element will be interpreted as HTML element.

In particular, note that the page header has the following script:

<ELS_PHEADER HEIGHT="30px" FONT-FAMILY="Arial" FONT-SIZE="8pt">
<TABLE style="FONT-SIZE: 8pt; WIDTH: 100%; HEIGHT: 20px">
<TBODY>
 <TR style="HEIGHT: 16px" vAlign=top>
 <TD style="FONT-WEIGHT: bold; WIDTH: 541px">
 <SPAN class=Field style="OVERFLOW: hidden; WIDTH: 408px; COLOR: gray;
 WHITE-SPACE: nowrap; HEIGHT: 14px">
 <FLD>"Report Title"</FLD>
 </TD>
 <TD style="WIDTH: 173px; TEXT-ALIGN: right">
 <SPAN class=Field style="OVERFLOW: hidden; WIDTH: 141px; COLOR: gray;
 WHITE-SPACE: nowrap">
 <FLD>"P " + Format(PageNum(),"") + " / " + Format(PageCount(),"")</FLD>
 </TD>
 </TR>
</TBODY>
</TABLE>
</ELS_PHEADER>

Chapter 2

30 Copyright  2003-2004, Epsilon-Logic Systems

Particular attention must be given to the HEIGHT attribute used in the ELS_PHEADER tag. This restricts the height of

the page header to the specified 30 pixels. Any object exceeding this specified height will be clipped by the

excessive amount. Also, we should emphasize that attribute values of SCRIPT tags need to be specified between

double quotes, and that unlike HTML interpreters, the SCRIPT compiler will not understand values specified

without double quotes, and will generate compile-time errors (e.g. for example, error messages that - SCRIPT's

prime directives have been violated with meaningless text, and that the user needs to negotiate on this matter

before any report compilation attempt can be made).

Figure 2.10Figure 2.10Figure 2.10Figure 2.10.... Showing the SCRIPT Editor

In this template, the page header essentially contains an HTML Table, which has a single row of two columns. The

style of the <TABLE> tag has font size of 8pt, width of 100% of the BODY. The style of the first column has bold font,

and the width of the column is 541px. The style of the second column inherits all attributes from the table style,

and in addition, has right text alignment. The first column contains a FLD-element of a constant string for report

title. The second column has a FLD-element containing the expression:

 "P " + Format(PageNum(),"") + " / " + Format(PageCount(),"")

The PageNum() is the SCRIPT language function which returns the page number of the current page during the

report generation. The PageCount() function on the other hand, returns the number of total pages after the whole

report is generated. The Format function essentially converts the first argument’s value into a string.

In a similar spirit, the page footer section of the report makes a use of the GetDate() function in a FLD-element,

bounded by an HTML tags, as shown in the following code:

<ELS_PFOOTER HEIGHT="30px" FONT-FAMILY="Arial" FONT-SIZE="8pt">
<TABLE style="FONT-SIZE: 8pt; WIDTH: 100%; HEIGHT: 20px">
<TBODY>
 <TR style="HEIGHT: 16px" vAlign="top">
 <TD style="FONT-WEIGHT: bold; WIDTH: 541px">

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 31

 <SPAN class=Field style="OVERFLOW: hidden; WIDTH: 408px; COLOR: gray;
 WHITE-SPACE: nowrap; HEIGHT: 14px">
 <FLD>"RUN DATE-TIME: " + Format(GetDate(),"mm/dd/yy") + "("
 + Format(GetDate(),"hh:nn:ss") + ")"</FLD>

 </TD>
 <TD style="WIDTH: 173px; TEXT-ALIGN: right">
 <SPAN class=Field style="OVERFLOW: hidden; WIDTH: 141px; COLOR: gray;
 WHITE-SPACE: nowrap">
 <FLD>" "</FLD>

 </TD>
 </TR>
</TBODY>
</TABLE>
</ELS_PFOOTER>

Again, note the HEIGHT attribute of the <ELS_PFOOTER> SCRIPT tag defining the height in pixels of the page footer

section in the report output.

We next look at the ELS_RSETTINGS section of the report, which was filled in for us by the BASIC01 standard

report template:

<ELS_RSETTINGS>
 SET REPORT_TITLE = "Report Title";
 SET PAGE_ORIENTATION = ELS_PORTRAIT;
 SET PAGE_SIZE = ELS_LETTER;
 SET PAGE_SOURCE = ELS_UPPER;
 SET PAGE_MARGINS.LEFT = 0.50;
 SET PAGE_MARGINS.RIGHT = 0.50;
 SET PAGE_MARGINS.TOP = 0.75;
 SET PAGE_MARGINS.BOTTOM = 0.50;
 SET DEFAULTMODE = ELS_FAST;
</ELS_RSETTINGS>

Recall that the ELS_RSETTINGS section allows only pure SCRIPT elements, and unlike the five report sections, it

cannot contain segments that are mixed with HTML elements. The user may change or add report settings options

via manual entry with the help of the List Report Settings menu item of the Source view's popup menu together

with IntelliSense, or alternatively calling the Report Settings dialog. In this simple example, we will be using the

Report Settings dialog to make some changes to the report title and page margins. To do so, we call this dialog

via the Report Settings menu item under the File menu. The Report Settings dialog contains the following

controls (see Figure 2.11 for further details):

Figure 2.11Figure 2.11Figure 2.11Figure 2.11.... Showing the Report Settings dialog

Chapter 2

32 Copyright  2003-2004, Epsilon-Logic Systems

 Paper frame containing the following controls:

 Size combo-box, with a list containing all possible printer paper sizes,

 Source combo-box, with a list containing all possible printer paper sources,

 Report Generation Mode combo-box, with a list containing the three generation modes of the SCRIPT

engine: Continuous, Fast and Style,

 Orientation frame containing the following controls:

 Portrait radio-button, to make report's page orientation portrait,

 Landscape radio-button, to make report's page orientation landscape,

 Margins frame containing the following controls:

 Left edit-box, to set the left margin of the page in inches,

 Right edit-box, to set the right margin of the page in inches,

 Top edit-box, to set the top margin of the page in inches,

 Bottom edit-box, to set the bottom margin of the page in inches,

Where the default paper size is Letter 8 ½ x 11 in, default paper source is Upper Paper, default orientation is

Portrait, and default report generation mode is Fast.

Observe in the Margins frame that the left, right and bottom margins are all set to 0.50 inches, and the top margin

is set to 0.75 inches. The first change that we like to perform is to set the top margin to 1.00 inch. After performing

this change and submitting the Report Settings dialog, the line in the ELS_RSETTINGS script representing the top

margin will be changed to the following:

SET PAGE_MARGINS.TOP = 1.00;

The value of REPORT_TITLE variable will become the HTML title in the <HEAD> section of the report output, when

considered as an HTML document. Since we will be using the Orders data from the Northwind database that

comes with MS-SQL Server, we will modify this value to the text "Orders Report" by entering this value directly

in the Source view. In fact, any of the values in the ELS_RSETTINGS section could have been modified by direct

editing in the Source view.

We define next a default data access connection object for this report project. To define such a connection select

the New Database Connection menu item from the File menu, or alternatively position the mouse pointer on the

Database node of the Project Explorer pane and using the right mouse-button click to open the popup menu, and

select New menu item from the popup menu. This will prompt the New Database Connection dialog for the

connection object's name and data access type. Enter a desired name for the database connection object, say

MyNWDB, and select the OLE DB Dynamic Data Access data access type, as shown in Figure 2.12:

Figure 2.12Figure 2.12Figure 2.12Figure 2.12.... Showing the New Database Connection dialog

After submitting this dialog, the Data Link Properties dialog appears with the Provider tab selected by default.

In this tab, we should select the Microsoft OLE DB Provider for SQL Server (since we want to connect to the MS-

SQL Server) and click the Next button, which will switch to the Connection tab. In this tab, select or enter your

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 33

MS-SQL Server name in step 1, enter your log on information in step 2, and select the Northwind database in step

3, then click the OK button. This will create a new connection node in the Project Explorer pane, under the

Database parent node, with the name MyNWDB. Double click this MyNWDB connection object node to open the

database into the Data View pane, as shown in Figure 2.13 below.

Figure 2.13Figure 2.13Figure 2.13Figure 2.13.... Showing the Data View pane

The Data View pane shows the structure of the tables, views stored-

procedures and user-defined functions of the back-end database of the

currently open connection object. In particular, you may use this pane to

explore the fields of the tables, as well as, the parameter structure of the

stored-procedures, that are shown in the pane. Moreover, you may use

the Get Details menu item of the popup menu to get the actual script of

the selected database object.

Data source object utilization methods in the Report Designer are as

follows. We first create and perfect a data source in the Query Builder

or the Data Shape Builder module, and when we are ready to use this

data source, we need to save this object as a query or data shape node

under the related database connection node. So that we can drag-drop

this node into the report script. After insertion of such object, the

inserted text can be freely edited, and will have no relation to the

original saved query object in the Project Explorer pane.

We illustrate this method by creating a simple data source utilizing only

the Orders table of the Northwind database. In the Project Explorer

pane, expand the MyNWDB database connection node, and observe that

it contains the AUX child node, which in turn contains two child nodes,

namely, the Queries and Datashapes container nodes. Use the right-

mouse-button click method over the Queries node to display the popup

menu. From this popup menu select the New menu command. This will

create a new instance of the query builder window opening it into the

Report Designer application.

Recall from Chapter 1, that the query builder window consists of three panes, namely, the Relations pane, the

Columns pane and the SQL pane, which work together to simplify the task of SQL command construction.

To continue the creation of the data source, simply drag-drop the Orders table from the Data View pane into the

Relations pane (i.e. the topmost pane in the query builder window). This will make a diagram of the table inside

the Relations pane, from which select the OrderID, OrderDate, ShippedDate, ShipName and ShipAddress fields.

At this point the SQL pane will contain the following text:

 SELECT

 OrderID,
 OrderDate,
 ShippedDate,
 ShipName,
 ShipAddress
FROM
 Orders

Change the name of the NewQuery node just created in the Project Explorer to MyOrders, by clicking a second

time on the node, which makes the node name editable (similar to Windows Explorer). Finally save the changes

you have made to this query by selecting the Save menu item from the File menu (or equivalently by clicking the

Save toolbar button). You may want to test this query by executing it via the Execute Query green arrow button in

the SQL main toolbar, which will display all records prescribed by the SQL command defining the query. For

more details about creating and maintaining queries consult the query builder online help via the Query Builder

Help menu command of the Help menu, for now you may close the newly created query.

Now to put the data source into the Report1.ELS script, make some empty lines just before the </ELS_RSETTINGS>

tag, and drag the MyOrders query node and drop it on this empty line. This action will result to the following

insertion:

Chapter 2

34 Copyright  2003-2004, Epsilon-Logic Systems

<ELS_RSETTINGS>

...
 SET DEFAULTMODE = ELS_FAST;

// put data source definition here

DECLARE @MyOrders DATASOURCE;
SET @MyOrders = "SELECT " +

 "OrderID, " +
 "OrderDate, " +
 "ShippedDate, " +
 "ShipName, " +
 "ShipAddress " +
 "FROM " +
 "Orders";
</ELS_RSETTINGS>

Note that the drag-drop action, essentially declared a variable of type DATASOURCE, using the name of the query

node as the variable name. It also, translated the SQL command into a valid string concatenation and set the

variable to this string expression. As you can see, this single drag-drop operation may save the user a lot of tedious

coding work, especially when the query text is several lines long. To check the correctness or simply to view the

existing data sources in the current report, you may use the Connection / Datasource List window via the

corresponding menu item under the Tools menu.

We proceed next, to insert an HTML Table into the ELS_RDETAIL section of the report script. To do so, first

position the cursor on the empty line preceding the </ELS_RDETAIL> tag, and then call the Insert Table dialog via

the HTML Table menu item of the Insert menu (or equivalently via the Insert HTML Table toolbar button). In this

Insert Table dialog, set the Rows to 1, Columns to 5, in the Table attributes set Width to 100 percent, and

finally set the Border size to 1 pixels (see Figure 2.14 for more details).

Figure 2.14.Figure 2.14.Figure 2.14.Figure 2.14. Showing the Insert Table dialog

Submitting this dialog will insert HTML Table script into the report script at the cursor location, so that the

ELS_RDETAIL section becomes as follows:

<ELS_RDETAIL>
// put report detail information here
<TABLE border=1 CellSpacing=0 CellPadding=0 WIDTH="100%">

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 35

 <TR>
 <TD></TD>
 <TD></TD>
 <TD></TD>
 <TD></TD>
 <TD></TD>
 </TR>
</TABLE>
</ELS_RDETAIL>

We are now ready to insert data fields into the columns of this table, therefore we insert an empty line between

each <TD> and </TD> tags, and then call the Data Fields window via the Data Fields menu item of the Insert

menu. The Data Fields window will display all the existing data sources used in the report under the Fields tree-

view. In particular, you will see the @MyOrders data source variable. Click on the plus icon to expand this node into

the field nodes. Then drag fields one by one and drop them in between each <TD> and </TD> tag pairs, as shown in

Figure 2.15 below:

Figure 2.15Figure 2.15Figure 2.15Figure 2.15.... Showing the field insertion process via drag-drop of fields from the Data Fields window

So that the five fields OrderID, OrderDate, ShippedDate, ShipName and ShipAddress, are respectively inserted

into the five <TD> and </TD> tag pairs.

After insertion, observe that the SCRIPT's Format function is applied over the first three fields. In particular, the

date type fields OrderDate and ShippedDate have default format specification "mm/dd/yyyy hh:nn:ss AM".

Modify this specification for both fields to include only the month-day-year information, so that the

ELS_RDETAIL section becomes as follows:

<ELS_RDETAIL>
<TABLE border=1 CellSpacing=0 CellPadding=0 WIDTH = "100%">
 <TR>
 <TD>
 <FLD>Format(@MyOrders.Column("OrderID"), "")</FLD>
 </TD>
 <TD>
 <FLD>Format(@MyOrders.Column("OrderDate"), "mm/dd/yyyy")</FLD>
 </TD>
 <TD>
 <FLD>Format(@MyOrders.Column("ShippedDate"), "mm/dd/yyyy")</FLD>
 </TD>
 <TD>
 <FLD>@MyOrders.Column("ShipName")</FLD>
 </TD>
 <TD>
 <FLD>@MyOrders.Column("ShipAddress")</FLD>
 </TD>

Chapter 2

36 Copyright  2003-2004, Epsilon-Logic Systems

 </TR>
</TABLE>
</ELS_RDETAIL>

So far, what we have constructed is only the record structure of a tabular presentation of the MyOrders data. We

still need iteration control to present all the records of this data source. This necessitates the use of pure SCRIPT

syntax sections utilizing the <ELS> and </ELS> tags. In particular, we need to add the following code just after the

<ELS_RDETAIL> tag:

<ELS>
WHILE NOT @MyOrders.Eof()
</ELS>

and the following code just after the </TABLE> tag, but before the </ELS_RDETAIL> tag:

<ELS>
 @MyOrders.Next();
END LOOP
</ELS>

So that the entire ELS_RDETAIL section now becomes as follows:

<ELS_RDETAIL>
<ELS>
WHILE NOT @MyOrders.Eof()
</ELS>
<TABLE border=1 CellSpacing=0 CellPadding=0 WIDTH = "100%">
 <TR>
 <TD>
 <FLD>Format(@MyOrders.Column("OrderID"), "")</FLD>
 </TD>
 <TD>
 <FLD>Format(@MyOrders.Column("OrderDate"), "mm/dd/yyyy")</FLD>
 </TD>
 <TD>
 <FLD>Format(@MyOrders.Column("ShippedDate"), "mm/dd/yyyy")</FLD>
 </TD>
 <TD>
 <FLD>@MyOrders.Column("ShipName")</FLD>
 </TD>
 <TD>
 <FLD>@MyOrders.Column("ShipAddress")</FLD>
 </TD>
 </TR>
</TABLE>
<ELS>
 @MyOrders.Next();
END LOOP
</ELS>
</ELS_RDETAIL>

There are a few more steps to make this report more acceptable from the viewpoint of good presentation, but we

think it is time to try compiling and running this report in the Report Designer. To compile the report click the

Compile ELS File toolbar button (or equivalently select the Compile menu command from the Build menu). A

result pane will appear at the bottom of the Source view window showing the compilation process, and if there are

no errors, the message will be as follows (displayed in the Build tab of the Results pane):

Compiling...
Report1.ELS
Linking...

0 error(s), 0 warning(s)

If there were errors, the SCRIPT compiler would have indicated the nature and location of the error in the script.

Moreover, a double-click on the error message line in the Results pane, will make the Source view jump to that

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 37

error location in the script. After a successful compilation, you are ready to run the report by clicking the Run

toolbar button. This action will generate the report output listing the pages in the Results pane and displaying the

first page in the Output View tab of the SCRIPT Editor. After the entire report generation, you may navigate

through the pages of the report output using the First, Previous, Next and Last toolbar buttons.

Looking at the first page of the output, the first noticeable problem is the abnormal alignment of the field columns

(see Figure 2.16 for more details).

Figure 2.16Figure 2.16Figure 2.16Figure 2.16.... Showing the abnormal alignment problem in the report output result

This problem steams from the HTML table render mechanisms, which tries to make the best suitable calculations

for the width of the columns in the HTML table depending on the size of the content of the column. And since

each line of the output is itself an HTML table, this alignment variation will occur from one line to the other. But

nevertheless, the HTML standards are so powerful that this problem becomes mere feature and not at all a

problem. As we will discover that adding some width attributes to the <TD> columns of the HTML table will

resolve this alignment problem. More precisely, we must set some percentage widths to the <TD> tags, for example,

10%, 20%, 40%, etc. So that the code becomes as follows:

<ELS_RDETAIL>
<ELS>
WHILE NOT @MyOrders.Eof()
</ELS>
<TABLE border=1 CellSpacing=0 CellPadding=0 WIDTH = "100%">
 <TR>
 <TD WIDTH = "10%">
 <FLD>Format(@MyOrders.Column("OrderID"), "")</FLD>
 </TD>
 <TD WIDTH = "10%">
 <FLD>Format(@MyOrders.Column("OrderDate"), "mm/dd/yyyy")</FLD>
 </TD>
 <TD WIDTH = "10%">
 <FLD>Format(@MyOrders.Column("ShippedDate"), "mm/dd/yyyy")</FLD>
 </TD>
 <TD WIDTH = "30%">
 <FLD>@MyOrders.Column("ShipName")</FLD>
 </TD>
 <TD WIDTH = "40%">
 <FLD>@MyOrders.Column("ShipAddress")</FLD>
 </TD>
 </TR>
</TABLE>
<ELS>

Chapter 2

38 Copyright  2003-2004, Epsilon-Logic Systems

 @MyOrders.Next();
END LOOP
</ELS>
</ELS_RDETAIL>

Alternatively, a more indepth study of the HTML SPAN-tag element reveals some very appropriate style

properties, namely the OVERFLOW and WHITE-SPACE properties. These properties along with the WIDTH and HEIGHT

style properties will control both the horizontal and vertical alignments in a much nicer way. Therefore, we need to

wrap the FLD-elements in the following manner:

 <FLD>...</FLD>

where width_value is an explicit width size of the column in specific units (e.g. 0.5in, 20px or 10pt). For

example, after adding these tags with appropriate width values, we may get the following code for the

ELS_RDETAIL section:

<ELS_RDETAIL>
<ELS>
WHILE NOT @MyOrders.Eof()
</ELS>
<TABLE border=1 CellSpacing=0 CellPadding=0 WIDTH = "100%">
 <TR>
 <TD>

 <FLD>Format(@MyOrders.Column("OrderID"), "")</FLD>

 </TD>
 <TD>

 <FLD>Format(@MyOrders.Column("OrderDate"), "mm/dd/yyyy")</FLD>

 </TD>
 <TD>

 <FLD>Format(@MyOrders.Column("ShippedDate"), "mm/dd/yyyy")</FLD>

 </TD>
 <TD>

 <FLD>@MyOrders.Column("ShipName")</FLD>

 </TD>
 <TD>

 <FLD>@MyOrders.Column("ShipAddress")</FLD>

 </TD>
 </TR>
</TABLE>
<ELS>
 @MyOrders.Next();
END LOOP
</ELS>
</ELS_RDETAIL>

Recompiling the report after these changes and running it will result into correct alignment of the field columns, as

is demonstrated in Figure 2.17.

Incidentally, it is a good place to point out that HTML table and SCRIPT FLD-element resize operations in the

Design view of the Report Designer will essentially amount to such wrapping of SPAN-tags around each resized

FLD-element. Therefore, there is no need to manually perform this SPAN-wrap operation in the Source view,

especially when appropriate column widths in pixels or points may become time consuming calculation. In such a

situation, the user may simply switch from the Source to Design view and visually resize each FLD-element along

with the container cells. Recall also, that for such resize operations, the Precision Resizer is an impressive tool.

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 39

Figure 2.17Figure 2.17Figure 2.17Figure 2.17.... Showing a section of the report output with correct alignment

For this simple report there are two more additional steps that we can take to make it look like a real report. First,

we can add a cover page with title and image, and secondly, it would be nice if we can add column headers.

Given that the report header section is a suitable place where one can put a cover page, we add a title and an image

in the ELS_RHEADER section, so that we will have the following code:

<ELS_RHEADER>

<DIV style="FONT-FAMILY:arial; FONT-WEIGHT: bold; FONT-SIZE: 26pt;

 COLOR:gray; TEXT-ALIGN: center">
// put an HTML horizontal line
<HR>
My First SCRIPT Report

Northwind Orders
<HR>

// put an image of BMP, JPG, GIF or any other format
<IMG height=364 width=512 hspace=0 align=baseline border=0
 src="THIS_FILE\Image\Stonehenge.jpg">
</DIV>
// this is the SCRIPT's way of forcing a page break
<ELS_PB>
</ELS_RHEADER>

In this code, we have used an HTML DIV-element, with a style specification of bold font of font-size 26 points,

and a centered text alignment for the two lined title "My First SCRIPT Report" and "Northwind Orders". This

text starts and ends with horizontal lines (check for the <HR> element). Following these, we have inserted an image

from the \Image subdirectory of this project. Note that THIS_FILE is an SCRIPT keyword and refers to the current

working directory path. We emphasize also, that height and width values must be specified for images either as

attribute or style, otherwise the picture may get clipped. Finally, this DIV-element is followed with the page break

keyword <ELS_PB> of the SCRIPT language.

We should point out that the image reference in this SCRIPT code segment assumes that an image file with the

name Stonehenge.JPG must exist in the \REPORTS\Image subfolder of the project. This means that the user must

copy all image files that are used in a report into this \REPORTS\Image subfolder. As a matter of fact, this is

necessary only when the user enters such IMG-element via direct editing in the Source view. To automatically

Chapter 2

40 Copyright  2003-2004, Epsilon-Logic Systems

copy images into the \REPORTS\Image subfolder, use the Insert Image dialog via the Picture menu command of

the Insert menu.

Although the SCRIPT language has special functions to manipulate nested column headers, nevertheless in this

section we will use the page-begin event to construct the column header from scratch. To proceed in this direction,

use the right mouse-button click to open the Source view's popup menu. From the Add/Move To Section menu

select the OnBeginPage submenu item, this will create the page-begin event handler at the end of the script, so

that one can define all actions that must be perform whenever during the report generation a new page starts. In our

case, we just want to put a column header row at the beginning of every new page. Moreover, this row must have

the same width properties as any record row. Therefore, using the row structure of the ELS_RDETAIL we copy and

insert it in the event handler, then modify the code to get the following:

Event OnBeginPage
<ELS>
 IF PageNum() > 1 THEN
</ELS>
<TABLE cellSpacing=0 cellPadding=0 width="100%" border=1>
 <TR>
 <TD bgcolor="lightgrey">

 OrderID

 </TD>
 <TD bgcolor="lightgrey">

 Order Date

 </TD>
 <TD bgcolor="lightgrey">

 Shipped Date

 </TD>
 <TD bgcolor="lightgrey">

 Ship Name

 </TD>
 <TD bgcolor="lightgrey">

 Ship Address

 </TD>
 </TR>
</TABLE>
<ELS>
 END IF
</ELS>
End Event

Examining this code segment, observe that the inside ELS-tags a conditional check is being made to see if the page

number is not the first page (i.e. the cover page), if not then a column header row is put at the beginning of the

page. Note also, that event sections are mixed language sections, so you can include SCRIPT with HTML or other

scripting languages.

Recompiling and running the report after these modifications, we will see that a bold column header row is added

at the beginning of each page of the report output, and that the cover page will be excluded from this column

header addition. Looking at the cover page though, we see that the report title and page information appear on the

top of the page. It would be nice if we can exclude this from the cover page as well. To do this, add the following

lines to the ELS_RSETTINGS report section:

 SET SUPPRESS_PHEADER.FIRSTPAGE = TRUE;
 SET SUPPRESS_PFOOTER.FIRSTPAGE = TRUE;

This report settings options will simply suppress the page header and page footer in the first page. The first two

pages of the report output are shown in Figure 2.18 below:

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 41

Figure 2.18Figure 2.18Figure 2.18Figure 2.18.... Showing the cover page and the first page of the final output

Advanced Syntax Elements
We hope that you have enjoyed the basics of the SCRIPT language, and that now you are ready to learn some

advanced features of ELS-Script.

In this section, we will describe the rest of the syntax elements of the SCRIPT language, including the following

features:

� More details about the Connection and Datasource objects

� Tabulation via the ELS-Row tags and ResultRow function

� The Format function and rules of format specification

� Conversion functions, including ToDate and CAST

� List of all functions and defining macros

� Specifying and using Parameter Options

� Specifying and using Query Options

� Pending variables and events

� More details about report settings

Connection and Datasource

In some cases it may be necessary to define data access within the report script itself rather than be passed from

the host application. For such a situation, SCRIPT language provides the CONNECTION object, which essentially

comes with all the capabilities that a data access may need, and can be imbedded directly inside the report script.

Chapter 2

42 Copyright  2003-2004, Epsilon-Logic Systems

Furthermore, such an object may give the report developer the flexibilities to define multiple data access

connections in a single report script. So that, for example, one may create a report, which collects information

from various databases on various servers and presents a summary report.

Just like any other variable, a CONNECTION object variable must be explicitly declared before definition and usage.

For example, the following code snippet declares and sets the connection string to a CONNECTION object variable:

DECLARE @Conn1 CONNECTION;

SET @Conn1 = "Provider=SQLOLEDB.1;Persist Security Info=False;User ID=sa;Data Source=HRSvr01";

Note that similar to the DATASOURCE object, a CONNECTION object variable establishes connection whenever the

variable is set. Therefore, in the above code snippet the connection defined by @Conn1 becomes open and a

connection is established with the HRSvr01 server.

We should emphasize that there is no need to worry about how to construct the connection string when setting a

CONNECTION object variable. In fact, a drag-drop operation of any existing connection object node from the Project

Explorer pane into the SCRIPT Editor will automatically insert the declaration and the definition of a connection

object with full connection string already defined for you.

Connection objects have the following properties or methods:

 TIMEOUT this is the property to indicate, in seconds, how long to wait while executing a command

before terminating the attempt and generating an error. Default value is 30 seconds, and it

must be assigned to integer values only.

 EXECUTE(sSQL) this is the function to execute the SQL command specified by the sSQL argument. In

particular, the command may be a valid SQL statement or a stored-procedure call. It returns

a variant data type depending on the argument, if in particular, the argument is a row-

returning query then the return will be a DATASOURCE object.

We next illustrate the usage of these syntax elements in the following code sample:

// declare connection variables and other necessary variables
DECLARE @connAccess, @connSQL CONNECTION;
DECLARE @ds DATASOURCE;
DECLARE @sAccessDS VARCHAR(300);
DECLARE @sUserID, @sDB, @sServer, @sPassword VARCHAR(50);
DECLARE @sSQL VARCHAR(1000);

// define the variable values, in a real-life situation these values may be
// passed from the host application via parameter or query options
SET @sAccessDS = "C:\Program Files\Microsoft Office\Office\Samples\Northwind.mdb";
SET @sUserID = "sa";
SET @sDB = "Northwind";
SET @sServer = "MyServer";
SET @sPassword = "my8739";

// define the connection strings
SET @connAccess = "Provider=Microsoft.Jet.OLEDB.3.15;Persist Security Info=False;" +
 "Data Source=" + @sAccessDS;
SET @connSQL = "Provider=SQLOLEDB.1;Persist Security Info=False;" +
 "User ID=" + @sUserID + ";" +
 "Initial Catalog=" + @sDB + ";" +
 "Data Source=" + @sServer + ";" +
 "Password=" + @sPassword;

// change the default timeouts to new values,
// observe the keyword SET was not used since these are property assignments
@connAccess.TIMEOUT = 50;
@connSQL.TIMEOUT = @connAccess.TIMEOUT + 30;

// define the SQL command
SET @sSQL = "SELECT LastName, FirstName, Title, HireDate " +

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 43

 "FROM Employees " +
 "WHERE DATEPART(yy,HireDate)>=" + Format(Year(GetDate(), "") +
 " AND DATEPART(mm,HireDate)>=" + Format(Month(GetDate(), "");

// apply the EXECUTE method and since the defined command returns records
// we may set a data source variable to this returned object
SET @ds = @connAccess.EXECUTE(@sSQL);

So far we have illustrated the use of TIMEOUT property, as well as, the EXECUTE method for the special case when

the SQL command is a SELECT statement. We will now continue this code sample, applying the EXECUTE method

over a stored-procedure (for example the [Employee Sales By Country] stored-procedure of the MS-SQL Server's

Northwind database), and then we will consider other SQL commands such as INSERT statements.

DECLARE @dtBeginDate, @dtEndDate DATETIME;
DECLARE @sSP VARCHAR(100);
DECLARE @dsX DATASOURCE;

SET @dtBeginDate = DateAdd(month, -3, GetDate());
SET @dtEndDate = GetDate();
// define the stored-procedure call command
SET @sSP = "exec [Employee Sales By Country] '" + Format(@dtBeginDate, "mm/dd/yyyy") +
 "','" + Format(@dtEndDate, "mm/dd/yyyy") + "'";
// we apply the EXECUTE method, note that this command also returns records
SET @dsX = @connSQL.EXECUTE(@sSP);

Here is an example of INSERT statement:

DECLARE @sLastName, @sFirstName, @sTitle VARCHAR(30);
DECLARE @dtHireDate DATETIME;

SET @sLastName = "Johns";
SET @sFirtName = "Barnaby";
SET @sTitle = "Manager, Sales";
SET @dtHireDate = ToDate("March 20, 2001", "mmmm d, yyyy");

SET @sSQL = "INSERT INTO employees (lastname, firstname, title, hiredate) " +
 "VALUES ('" + @sLastName + "','" + @sFirstName + "','" +
 @sTitle + "','" + Format(@dtHireDate,"mm/dd/yyyy") + "')";
// now apply the EXECUTE method, which will insert
// a record into the Employees table
@connSQL.EXECUTE(@sSQL);

Observe that in this code sample, we have made use of several SCRIPT functions, such as: Format, GetDate,

DateAdd and ToDate functions. As we have indicated earlier that we will describe these functions, as well as, all

other SCRIPT functions, in the later sections of this chapter. Another observation can be made concerning the

applicability of the multiple connection feature of the SCRIPT language inside a single script. In fact, it is not very

difficult to see that one may use this feature to create a data transformation from one database to another. For

example, the following additional code will give us such a transformation from MS-Access Northwind database

into MS-SQL Server Northwind database:

DECLARE @nCount INT;

// recall that @ds was assigned to the MS-Access Northwind
// recordset returned from Employees table
WHILE NOT @ds.EOF()
 SET @dtHireDate = @ds.Column("HireDate");
 SET @sFirstName = @ds.Column("FirstName");
 SET @sLastName = @ds.Column("LastName");
 SET @sTitle = @ds.Column("Title");
 SET @sSQL = "INSERT INTO employees (lastname, firstname, title, hiredate) " +
 "VALUES ('" + @sLastName + "','" + @sFirstName + "','" + @sTitle +
 "','" + Format(@dtHireDate, "mm/dd/yyyy") + "')";

 @connSQL.EXECUTE(@sSQL);

Chapter 2

44 Copyright  2003-2004, Epsilon-Logic Systems

 SET @nCount = @nCount + 1;
 @ds.Next();
END LOOP

We consider next some more details concerning the DATASOURCE objects. Recall that DATASOURCE objects were

described in "Datasource Object and FLD-tag" section of this chapter. The only difference is that here we
illustrate the use of the Connect method, as well as, an alternative way of utilizing the Column method. The syntax

of these DATASOURCE object's methods are as follows:

Connect(CONNECTION objConn) function to define the data connection for the data source, if this function is

never called for a particular DATASOURCE object, then the default connection

of the report engine will be assumed. The argument must be an object of

CONNECTION type (which will be described later in this chapter).

 Column(VARCHAR sFieldName) function to return the value of a particular field of the data source, returns a

data type depending on the data type of the field in the backend database

server. The argument must be a VARCHAR string representing a valid name of

the field or alias of the field.

 Column(INT nFieldIndex) function to return the value of a particular field of the data source, returns a

data type depending on the data type of the field in the backend database

server that correspond to the specified field index. The argument must be

an integer index corresponding to the 0-based index of the fields of the data

source.

Therefore now the user may retrieve field values via the field/alias name, or alternatively via the 0-based index of

the field in the definition of the data source. So that for example the four lines:

 SET @dtHireDate = @ds.Column("HireDate");
 SET @sFirstName = @ds.Column("FirstName");
 SET @sLastName = @ds.Column("LastName");
 SET @sTitle = @ds.Column("Title");

of the last code snippet can be alternatively performed via the following four lines:

 SET @dtHireDate = @ds.Column(3); // since HireDate has index 3
 SET @sFirstName = @ds.Column(1); // since FirstName has index 1
 SET @sLastName = @ds.Column(0); // since LastName has index 0
 SET @sTitle = @ds.Column(2); // since Title has index 2

Finally, the following code snippet illustrates the usage of the Connect method:

// assuming the connection object of earlier sample code
DECLARE @dsNew DATASOURCE;

@dsNew.Connect(@connSQL);
SET @dsNew = "SELECT * FROM employees";

We should emphasize that if for a DATASOURCE object the Connect method is never called then the default

connection of the report engine will be assumed. Therefore, if you are passing the data access connection

dynamically from the host application to the report engine, and you are using only one such connection throughout

your reports, then you do not need to call the Connect method for your DATASOURCE objects in the reports.

ELS-Row and ResultRow

Recall that in the "A Simple Example" section of this chapter, we have outlined the script of a simple report,

which utilizes a tabular presentation of data via direct HTML tables. Moreover, HTML table defining the tabular

presentation was intertwined directly with the logic of the iteration over the data source. This intertwining may

sometimes be a little undesirable, especially when the same tabular format is to be used at several different points

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 45

in the report generation process. A few other somewhat undesirable aspects of HTML tables are the automatic

wrapping, as well as, the rigid grid structure. For example, it is not easy to make two rows in a single HTML table

to have completely independent column structure. Of course, there are such attributes as COLSPAN, with which one

may try to obtain different column numbers and widths for two rows, but this concept is based on grid-like

structure of the HTML table, and moreover, it may get quite complicated to code, as is illustrated in the following

HTML code example:

<table border="0" cellpadding="0" cellspacing="0" width="100%">

<tr>
 <td width="24%" colspan="2">Col11</td>
 <td width="12%">Col12</td>
 <td width="38%" colspan="3">Col13</td>
 <td width="13%">Col14</td>
 <td width="13%">Col15</td>
</tr>
<tr>

 <td width="12%">Col21</td>
 <td width="24%" colspan="2">Col22</td>
 <td width="12%">Col23</td>
 <td width="39%" colspan="3">Col24</td>
 <td width="13%">Col25</td>

</tr>
<tr>

 <td width="12%">Col31</td>
 <td width="12%">Col32</td>
 <td width="37%" colspan="3">Col33</td>
 <td width="13%">Col34</td>
 <td width="13%">Col35</td>
 <td width="13%">Col36</td>

</tr>
</table>

Because of these shortcomings of the HTML tables, the SCRIPT language has a special tabulation element called

ELS-Row. This element is defined in the same spirit as HTML tables, namely via tags and their respective

attributes. The following list defines all the tags that together compose the ELS-Row element:

 <ELS_ROW>, </ELS_ROW> begin and end tags of the ELS-Row element,

 <L>, </L> begin and end tags of the ELS-Line element,

 <C>, </C> begin and end tags of the ELS-Column element,

 <HDR>, </HDR> begin and end tags of the column header element,

 <FLD>, </FLD> begin and end tags of the field element.

An ELS-Row element consists of one or more ELS-Line elements. An ELS-Line element consists of one or more

ELS-Column elements. The ELS-Column elements consist of HDR or FLD elements, intertwined with HTML

segments. Therefore, the general syntax for an ELS-Row construct may be as follows:

<ELS_ROW NAME=els_row_spec_name els_row_attributes>
 <L els_line_attributes_1>
 <C els_column_attributes_11>
 ...HDR or FLD elements intertwined with HTML segments...
 </C>
 ...
 <C els_column_attributes_1M1>
 ...HDR or FLD elements intertwined with HTML segments...
 </C>
 </L>
 <L els_line_attributes_2>
 <C els_column_attributes_21>
 ...HDR or FLD elements intertwined with HTML segments...
 </C>
 ...
 <C els_column_attributes_2M2>

Chapter 2

46 Copyright  2003-2004, Epsilon-Logic Systems

 ...HDR or FLD elements intertwined with HTML segments...
 </C>
 </L>
 ...
 <L els_line_attributes_N>
 <C els_column_attributes_N1>
 ...HDR or FLD elements intertwined with HTML segments...
 </C>
 ...
 <C els_column_attributes_NMN>
 ...HDR or FLD elements intertwined with HTML segments...
 </C>
 </L>
</ELS_ROW>

where els_row_spec_name is a unique name string identifying the ELS-Row tabulation specification, the

els_row_attributes is a list of other ELS-Row attributes, the els_line_attributes_i are lists of ELS-Line

attributes for respective i-th ELS-Line elements, and the els_column_attributes_ij are lists of ELS-Column

attributes for respective ij-th ELS-Column elements.

Note that in the general syntax of ELS-Row element, the attributes and the number of columns from one ELS-Line

to another may vary in a completely arbitrary manner, and therefore compared to HTML tables, ELS-Rows have a

much more flexible tabulation mechanism. But before we begin the excursion course into the realms of complex

tabulations of datasets via ELS-Row elements, we need to outline the rules and attributes of ELS-Row elements.

Each <ELS_ROW> tag must be uniquely identified via the mandatory NAME attribute value. We will find out in a little

while, why the specification of this NAME attribute is mandatory. All attribute values must be specified in between

double-quotes, single quotes or missing quotes are considered invalid values and will generate a “meaningless

text” error when the script is compiled.

The complete listing of attributes of the <ELS_ROW> tag is outline in the following table:

Attribute Description

NAME The value of this attribute must be unique string identifying the ELS-Row element. The NAME attribute is
mandatory, and therefore must be specified for all ELS-Row elements.

ALIGN This attribute controls the ELS-Row element's position relative to the HTML body or the parent element. It

can assume only the following values (in double-quotes): left (default), center and right

BACKGROUND This attribute controls the background image of the ELS-Row element. By default the background of an ELS-

Row element is transparent.

BGCOLOR This attribute controls the background color of the ELS-Row element, by default the background is

transparent. Valid values are either named colors, such as red, blue, etc. or the RGB values in hex codes

with the following format: #hhhhhh

BORDER This attribute controls the exterior border of the tabulation resulting from the ESL-Row element. By default

the value is 0. Valid values may be specified in pixels, points, inches or any other unit (e.g. "90px",

"10.8pt", "1.5in", etc.)

BORDERCOLOR This attribute controls the border color of all cells and the exterior border as well. By default this value is

empty (i.e. transparent). Valid values are either named colors, such as red, blue, etc. or the RGB values in

hex codes with the following format: #hhhhhh

BORDERCOLORDARK This attribute controls the border color of cells and the exterior frame which lies on the shade side of the

frame. Valid values are either named colors, such as red, blue, etc. or the RGB values in hex codes with

the following format: #hhhhhh

BORDERCOLORLIGHT This attribute controls the border color of cells and the exterior frame which lies on the light-source side of

the frame. Valid values are either named colors, such as red, blue, etc. or the RGB values in hex codes

with the following format: #hhhhhh

CELLPADDING This attribute controls the padding within cells (i.e. ELS-Column elements). By default the value is 0. Valid
values may be specified in pixels, points, inches or any other unit.

CELLSPACING This attribute controls the space between cells (i.e. ELS-Column elements). By default the value is 0. Valid

values may be specified in pixels, points, inches or any other unit.

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 47

CLASS This attribute specifies style sheet classes that the element belongs to. Values may be a space separated list

of style sheet class names.

DIR This attribute controls the directionality of text. Valid values are "ltr" and "rtl". By default the value is

"ltr".

FRAME This attribute specifies which sides of the frame surrounding the ELS-Row will be visible. Possible values

are: void, above, below, hsides, lhs, rhs, vsides, box and border.

HEIGHT This attribute controls the height of the ESL-Row element. Valid values may be specified in pixels, points,

inches or any other unit, or in percents (e.g. "90px", "10.8pt", "1.5in", "75%", etc.).

ID This attribute identifies the element. Not very useful in SCRIPT language.

LANG This attribute specifies the language code.

LANGUAGE This attribute specifies the predefined script language name.

RULES This attribute controls the rulings between rows and columns. Possible values are: none, groups, rows,

cols and all.

STYLE This attribute controls the style properties of the ELS-Row element, and it is the recommended method of
controlling the format behavior of elements in SCRIPT language.

WIDTH This attribute controls the width of the ESL-Row element. Valid values may be specified in pixels, points,

inches or any other unit, or in percents (e.g. "90px", "10.8pt", "1.5in", "75%", etc.)

 Table 2.2. The attributes of ELS_ROW tag

Before we continue with our outline of the attributes of ELS-Line and ELS-Column elements, we should emphasize

the use of STYLE attribute in <ELS_ROW> tags. Ever since the introduction and the stabilization of the Cascaded

Style Sheet, as well as, the XHTML standards, the use of style sheets has immerged to become a more preferred

method to specify properties of HTML tags or elements. Following in this spirit, we first list all property names of

the STYLE attribute that are support by the IE5.5 browser.

ACCELERATOR
BACKGROUND-ATTACHMENT
BACKGROUND-COLOR
BACKGROUND-IMAGE
BACKGROUND-POSITION-X
BACKGROUND-POSITION-Y
BACKGROUND-REPEAT
BEHAVIOR
BORDER-BOTTOM
BORDER-BOTTOM-COLOR
BORDER-BOTTOM-STYLE
BORDER-BOTTOM-WIDTH
BORDER-COLLAPSE
BORDER-COLOR
BORDER-LEFT
BORDER-LEFT-COLOR
BORDER-LEFT-STYLE
BORDER-LEFT-WIDTH
BORDER-RIGHT
BORDER-RIGHT-COLOR
BORDER-RIGHT-STYLE
BORDER-RIGHT-WIDTH
BORDER-STYLE
BORDER-TOP
BORDER-TOP-COLOR
BORDER-TOP-STYLE
BORDER-TOP-WIDTH
BORDER-WIDTH
BOTTOM
CLEAR
CLIP

COLOR
CURSOR
DIRECTION
DISPLAY
FILTER
FLOAT
FONT-FAMILY
FONT-SIZE
FONT-STYLE
FONT-VARIANT
FONT-WEIGHT
HEIGHT
IME-MODE
LAYOUT-FLOW
LAYOUT-GRIDCHAR
LAYOUT-GRIDLINE
LAYOUT-GRIDMODE
LAYOUT-GRIDTYPE
LEFT
LETTER-SPACING
LINE-BREAK
LINE-HEIGHT
LIST-STYLE-IMAGE
LIST-STYLE-POSITION
LIST-STYLE-TYPE
MARGIN-BOTTOM
MARGIN-LEFT
MARGIN-RIGHT
MARGIN-TOP
OVERFLOW
OVERFLOW-X

OVERFLOW-Y
PADDING-BOTTOM
PADDING-LEFT
PADDING-RIGHT
PADDING-TOP
PAGE-BREAK-AFTER
PAGE-BREAK-BEFORE
POS-BOTTOM
POS-HEIGHT
POSITION
POS-LEFT
POS-RIGHT
POS-TOP
POS-WIDTH
RIGHT
RUBY-ALIGN
RUBY-OVERHANG
RUBY-POSITION
SCROLLBAR-3DLIGHT-COLOR
SCROLLBAR-ARROW-COLOR
SCROLLBAR-BASE-COLOR
SCROLLBAR-DARKSHADOW-
COLOR
SCROLLBAR-FACE-COLOR
SCROLLBAR-HIGHLIGHT-
COLOR
SCROLLBAR-SHADOW-COLOR
SCROLLBAR-TRACK-COLOR
TABLE-LAYOUT
TEXT-ALIGN
TEXT-ALIGN-LAST

TEXT-AUTOSPACE
TEXT-DECORATION
TEXT-DECORATION-BLINK
TEXT-DECORATION-
LINETHROUGH
TEXT-DECORATION-NONE
TEXT-DECORATION-OVERLINE
TEXT-DECORATION-UNDERLINE
TEXT-INDENT
TEXT-JUSTIFY
TEXT-JUSTIFY-TRIM
TEXT-KASHIDA
TEXT-KASHIDA-SPACE
TEXT-TRANSFORM
TEXT-UNDERLINE-POSITION
TOP
UNICODE-BIDI
VERTICAL-ALIGN
VISIBILITY
WHITE-SPACE
WIDTH
WORD-BREAK
WORD-SPACING
WORD-WRAP
WRITING-MODE
Z-INDEX
ZOOM

Table 2.3. All possible property names of the STYLE attribute

Properties of STYLE attribute are specified in a semicolon separated string, with each property stated in the form

Chapter 2

48 Copyright  2003-2004, Epsilon-Logic Systems

name:value, for example:

style="FONT-SIZE:32pt; BACKGROUND-COLOR:blue; TEXT-ALIGN:center; OVERFLOW:hidden"

where value is an appropriate valid value depending on the name type. To get the reader acquainted with the value

types of properties of STYLE attribute, we advice checking the Properties pane in Design view. In general, the

value types fall in one of the following categories: color, uri (e.g. url), percentage, length, string, identifier,

integer, size, number, width and time.

We are ready now to continue the attribute listing of the ELS-Row. In particular, we consider next the attributes of

the <L> tags (see Table 2.4):

Attribute Description

ALIGN This attribute specifies the alignment of data and the justification of text in a cell (i.e. ELS-Column element).

It can assume only the following values (in double-quotes): left (default), center, right and

justify.

BACKGROUND This attribute controls the background image of the ELS-Line element. By default the background of an ELS-

Line element is transparent.

BGCOLOR This attribute controls the background color of the ELS-Line element, by default the background is

transparent. Valid values are either named colors, such as red, blue, etc. or the RGB values in hex codes

with the following format: #hhhhhh

BORDER This attribute controls the exterior border of the tabulation resulting from the ESL-Line element. By default

the value is 0. Valid values may be specified in pixels, points, inches or any other unit (e.g. "90px",

"10.8pt", "1.5in", etc.)

BORDERCOLOR This attribute controls the border color of all cells and the exterior border as well. By default this value is

empty (i.e. transparent). Valid values are either named colors, such as red, blue, etc. or the RGB values in

hex codes with the following format: #hhhhhh

BORDERCOLORDARK This attribute controls the border color of cells and the exterior frame which lies on the shade side of the

frame. Valid values are either named colors, such as red, blue, etc. or the RGB values in hex codes with

the following format: #hhhhhh

BORDERCOLORLIGHT This attribute controls the border color of cells and the exterior frame which lies on the light-source side of

the frame. Valid values are either named colors, such as red, blue, etc. or the RGB values in hex codes

with the following format: #hhhhhh

CELLPADDING This attribute controls the padding within cells (i.e. ELS-Column elements). By default the value is 0. Valid
values may be specified in pixels, points, inches or any other unit.

CELLSPACING This attribute controls the space between cells (i.e. ELS-Column elements). By default the value is 0. Valid
values may be specified in pixels, points, inches or any other unit.

CLASS This attribute specifies style sheet classes that the element belongs to. Values may be a space separated list

of style sheet class names.

DIR This attribute controls the directionality of text. Valid values are "ltr" and "rtl". By default the value is

"ltr".

FRAME This attribute specifies which sides of the frame surrounding the ELS-Line will be visible. Possible values

are: void, above, below, hsides, lhs, rhs, vsides, box and border.

HEIGHT This attribute controls the height of the ESL-Line element. Valid values may be specified in pixels, points,

inches or any other unit, or in percents (e.g. "90px", "10.8pt", "1.5in", "75%", etc.).

ID This attribute identifies the element. Not very useful in SCRIPT language.

LANG This attribute specifies the language code.

LANGUAGE This attribute specifies the predefined script language name.

RULES This attribute controls the rulings between rows and columns. Possible values are: none, groups, rows,

cols and all.

STYLE This attribute controls the style properties of the ELS-Line element, and it is the recommended method of

controlling the format behavior of elements in SCRIPT language.

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 49

VALIGN This attribute specifies the vertical position of data within cell (i.e. ELS-Column element). Possible values

are top, middle, bottom and baseline.

WIDTH This attribute controls the width of the ESL-Line element. Valid values may be specified in pixels, points,

inches or any other unit, or in percents (e.g. "90px", "10.8pt", "1.5in", "75%", etc.)

Table 2.4. All possible attributes of the ELS-Line elements

There are very little differences between attributes of the ELS-Row and that of the ELS-Line. In contrast, the

attributes of the ELS-Column have some significant differences in terms of interpretation. The following table lists

all the relevant attributes of the ELS-Column elements:

Attribute Description

ABBR This attribute should be used to provide abbreviated form of the cell's (i.e. ELS-Column's) content.

ALIGN This attribute specifies the alignment of data and the justification of text in a cell (i.e. ELS-Column element).

It can assume only the following values (in double-quotes): left (default), center, right and

justify.

BACKGROUND This attribute controls the background image of the ELS-Column element. By default the background of an
ELS-Column element is transparent.

BGCOLOR This attribute controls the background color of the ELS-Column, by default the background is transparent.

Valid values are either named colors, such as red, blue, etc. or the RGB values in hex codes with the

following format: #hhhhhh

BORDERCOLOR This attribute controls the border color of the ELS-Column. Valid values are either named colors, such as

red, blue, etc. or the RGB values in hex codes with the following format: #hhhhhh

BORDERCOLORDARK This attribute controls the segment of the border color of the ELS-Column that lies on the shade side. Valid

values are either named colors, such as red, blue, etc. or the RGB values in hex codes with the following

format: #hhhhhh

BORDERCOLORLIGHT This attribute controls the segment of the border color of the ELS-Column that lies on the light source side.

Valid values are either named colors, such as red, blue, etc. or the RGB values in hex codes with the

following format: #hhhhhh

CLASS This attribute specifies style sheet classes that the element belongs to. Values may be a space separated list
of style sheet class names.

COLSPAN This attribute specifies the number of columns the cell spans over. Not very useful when used in ELS-

Column elements.

DIR This attribute controls the directionality of text. Valid values are "ltr" and "rtl". By default the value is

"ltr".

HEIGHT This attribute controls the height of the ESL-Column element. Valid values may be specified in pixels, points,

inches or any other unit, or in percents (e.g. "90px", "10.8pt", "1.5in", "75%", etc.).

ID This attribute identifies the element. Not very useful in SCRIPT language.

LANG This attribute specifies the language code.

LANGUAGE This attribute specifies the predefined script language name.

NOWRAP This attribute specifies to disable automatic text wrapping for the ELS-Column element.

ROWSPAN This attribute specifies the number of rows the cell spans over.

STYLE This attribute controls the style properties of the ELS-Column element, and it is the recommended method of

controlling the format behavior of elements in SCRIPT language.

VALIGN This attribute specifies the vertical position of data within cell (i.e. ELS-Column element). Possible values

are top, middle, bottom and baseline.

WIDTH This attribute controls the width of the ESL-Column element. Valid values may be specified in pixels, points,

inches or any other unit, or in percents (e.g. "90px", "10.8pt", "1.5in", "75%", etc.)

Table 2.5. All possible attributes of the ELS-Column elements

Chapter 2

50 Copyright  2003-2004, Epsilon-Logic Systems

So far we have covered all parts of an ELS-Row element up to the ELS-Column level. The ELS-Column elements

are essentially the cells of the ELS-Row, and therefore may contain HDR or FLD elements intertwined with HTML

segments. In addition, to the <ELS_ROW>, <L> and <C> tags, the SCRIPT language has another tag sometimes used

in ELS-Row elements. This tag is denoted by <ELS_SHAPE> and is primarily used to divide an ELS-Row element

into named subsections. We will describe more about the ELS-Shape elements later on in this document, for now,

we will avoid using ELS-Shapes.

The main purpose of the ELS-Row element is to provide a row specification for the data presentation in the report

output. Moreover, this row specification is identified by the unique name value of the NAME attribute. The data

flow, on the other hand, is controlled via the ResultRow or ResultRows functions, which we define next. The

ResultRow function has the following syntax:

 ResultRow(VARCHAR sRowSpecName [, VARCHAR sDSSpecName]);

where the second argument is optional (as indicated by the square brackets) and will be by default NULL if not

specified. This function applies the row specification referenced by the sRowSpecName over the current record of

the data set (i.e. a single record). The ResultRows function has the following syntax:

 ResultRows(DATASOURCE oDataSource, VARCHAR sRowSpecName [, VARCHAR sDSSpecName]);

where oDataSource is the data source on which the row specification defined by sRowSpecName spans, while the

third argument is optional ELS-Shape row specification. The difference between the ResultRow and ResultRows

functions is that ResultRow applies only over the current record, whereas ResultRows applies over the whole data

set defined by the first argument. We illustrate the use of these functions in the following code snippet:

// ELS-Row "ELSRowMain" must be specified before this line
// with ELS-Shapes "Orders" and "OrderDetails"
<ELS>
 // set the parent recordset @ds
 SET @ds = @sSQL;

 WHILE NOT @ds.EOF()
 // display the parent records and set the child recordset
 ResultRow("ELSRowMain", "Orders");
 SET @dsChild = @ds.CHILD("OrdID");
 // display all Order Details records for the current OrderID
 ResultRows(@dsChild, "ELSRowMain", "OrderDetails");
 @ds.NEXT();
 END LOOP
</ELS>

Note that in this code snippet we have used data shape recordsets, and linked these recordsets via the CHILD

method of the parent recordset. We should point out that this code snippet is not at all complete, and should only

serve for the purpose of illustrating the syntax usage of the ResultRow and ResultRows functions.

In this regards, we should emphasize also that the data presentation location in the report output is essentially

determined by the location of the ResultRow or ResultRows function calls, while the ELS-Row specification only

defines the format and structure of the tabulation.

Recall that a FLD element, defined by the <FLD> and </FLD> tags, is essentially used to put the result of any

SCRIPT expression or field into the report output as HTML segments. It can be utilized only outside pure ELS

sections, while its content can be pure ELS elements. Recall also, that pure ELS elements consist of valid SCRIPT

expressions or data fields, and that the main function of the <FLD> and </FLD> tags, is to convert the run-time value

of the specified SCRIPT expression to character string representation to be put as HTML segment into the report

output. A HDR element, on the other hand, is defined via <HDR> and </HDR> tags, and may contain HTML, as well

as, FLD elements. The HDR elements control the column headers of the tabulation used in a report, and have

special functions that control the repetition patterns of these headers in nested row sets.

To illustrate the usage of the FLD and HDR elements, we first convert the simple example that we outlined in

previous sections to a form that utilizes ELS-Row elements. To proceed in this direction, you may use the Project

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 51

Explorer pane's popup menu, to copy and paste a copy of the existing Report1.ELS report file into the project.

Then rename this copy as Report2.ELS and open it into the SCRIPT Editor window. The first task that we must

perform is to remove the content of the ELS_RDETAIL report section. To do this, select the text in between the

<ELS_RDETAIL> and </ELS_RDETAIL> tags and delete it from the script.

Figure 2.19Figure 2.19Figure 2.19Figure 2.19.... Showing the Insert ELS Line dialog

The next task will be to add an ELS-Row element inside the ELS_RDETAIL section. To accomplish this, put the

cursor between <ELS_RDETAIL> and </ELS_RDETAIL> tags and call the Insert ELS-Row resizable dialog via the

ELS Row menu item of the Insert menu (or alternatively via the Insert ELS Row toolbar button). In the Insert

ELS-Row dialog, uncheck the Only ELS-Row Spec check-box, so that the Datasource combo-box becomes

enabled. Drop down the Datasource combo-box and select the @MyOrders from the existing data sources defined

in the report script. In general, this combo-box will contain all the data source variable names declared in the

current report script. Observe that the Name edit-box already contains a suggested ELS-Row element name, for

example ELSRow1. Next, note the toolbar buttons in this Insert ELS-Row dialog, and in particular, click on the

Add Line button, which is the second button from left. This will prompt the Insert ELS Line dialog shown in

Figure 2.19. In this dialog make sure the Width is 100 percent, set the Border size to 0 pixels, and increase the

Columns to 5. Submitting this Insert ELS Line dialog will insert a line into the client area of the Insert ELS-

Row window (see Figure 2.20 for more details). The user may add more ELS-Lines or move selected line up or

down, as well as, delete or duplicate such lines via the toolbar buttons. Once an ELS-Line is inserted into the client

area of the Insert ELS-Row window, the user can resize the columns of such line via mouse-button press and

move combination. Observe in Figure 2.20 that we have resized the column widths to proper sizes to fit the

requirements of the simple example.

Figure 2.20Figure 2.20Figure 2.20Figure 2.20.... Showing the Insert ELS Row resizable dialog with a single ELS-Line added and properly resized

Chapter 2

52 Copyright  2003-2004, Epsilon-Logic Systems

When the user submits this Insert ELS-Row window, the following empty ELS-Row element will be inserted at

the cursor location in the ELS_RDETAIL section, together with the iteration control logic to generate the data

presentation:

<ELS_RDETAIL FONT-FAMILY="Times New Roman" FONT-SIZE="9pt">
<ELS_ROW NAME="ELSRow1">
 <L border="0" CellSpacing="0" CellPadding="0" WIDTH="100%" HEIGHT="15">
 <C WIDTH="8%" HEIGHT="15">

 </C>
 <C WIDTH="12%" HEIGHT="15">

 </C>
 <C WIDTH="12%" HEIGHT="15">

 </C>
 <C WIDTH="28%" HEIGHT="15">

 </C>
 <C WIDTH="40%" HEIGHT="15">

 </C>
 </L>
</ELS_ROW>
<ELS>
WHILE NOT @MyOrders.Eof()
 ResultRow("ELSRow1");
 @MyOrders.Next();
END LOOP
</ELS>

</ELS_RDETAIL>

Observe that by default each <C> tag contains only the HTML code for the space character, namely “ ”. We

will replace these empty cells with the desired data fields utilizing the Data Fields window, but before we do this

we advise the user on couple of relevant points. The first is to change the default format option of date-time data

types to short dates. This can be performed via the Options dialog's Data tab. In this tab, click on the button

corresponding to the Date Time data type, and in Format/Conversion Wizard dialog change the Format combo-

box value to Short Date, and then submit both dialogs.

Now, using the Data Fields window, insert the desired fields via drag-drop into the lines that contain the

“ ”. Also, we manually enter the desired column header caption wrapped between <HDR> and </HDR> tags, so

that ELS_RDETAIL report section becomes as follows:

<ELS_RDETAIL FONT-FAMILY="Times New Roman" FONT-SIZE="9pt">
<ELS_ROW NAME="ELSRow1">
 <L border="0" CellSpacing="0" CellPadding="0" WIDTH="100%" HEIGHT="15">
 <C WIDTH="8%" HEIGHT="15">
 <HDR>OrderID</HDR> // column header for column 1
 <FLD>Format(@MyOrders.Column("OrderID"), "")</FLD>
 </C>
 <C WIDTH="12%" HEIGHT="15">
 <HDR>Order Date</HDR> // column header for column 2
 <FLD>Format(@MyOrders.Column("OrderDate"), "mm/dd/yyyy")</FLD>
 </C>
 <C WIDTH="12%" HEIGHT="15">
 <HDR>Ship Date</HDR> // column header for column 3
 <FLD>Format(@MyOrders.Column("ShippedDate"), "mm/dd/yyyy")</FLD>
 </C>
 <C WIDTH="28%" HEIGHT="15">
 <HDR>Ship Name</HDR> // column header for column 4
 <FLD>@MyOrders.Column("ShipName")</FLD>
 </C>
 <C WIDTH="40%" HEIGHT="15">
 <HDR>Ship Address</HDR> // column header for column 5
 <FLD>@MyOrders.Column("ShipAddress")</FLD>

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 53

 </C>
 </L>
</ELS_ROW>
<ELS>
BeginHeader("ELSRow1");
WHILE NOT @MyOrders.Eof()
 ResultRow("ELSRow1");
 @MyOrders.Next();
END LOOP
EndHeader("ELSRow1");
</ELS>

</ELS_RDETAIL>

Note that when inserting fields of date-time data type, the adjusted Options dialog's default format specification of

"mm/dd/yyyy" was automatically used in the data field insertion. One other crucial point concerning the advantages

of using ELS-Row elements compared to HTML tables for tabulation of data presentation, is that in ELS-Row

elements you may specify column widths as attributes to the <C> tags with percents rather than using tags

with unit measures. Moreover, the SCRIPT engine has internal mechanisms to handle column headers when using

HDR elements inside ELS-Row elements combined with proper HDR function calls. For example, to make column

headers appear at the beginning of each page of the report detail section, all one has to do is to include HDR

elements in the ELS-Row specification, as we did in the previous code segment, and utilize the BeginHeader and

EndHeader HDR functions (to be described shortly). As a result of this later fact, we should remove the old code

from the OnBeginPage event that used to handle the column headers in the HTML table case. This completes the

simple example, with the HTML table replaced with a much more powerful ELS-Row element.

We now are ready to describe the HDR functions in more details. Essentially, these functions control the pattern of

the column headers used in ELS-Row elements. To begin the discussion of this topic, it is helpful to view the

column headers as a collection of header rows, with a well-defined order. And that this collection is repeated at the

beginning of each page, as well as, at the beginning of each group subsection of the report. We list these column-

headers pattern manipulation functions next:

BeginHeader(sRowName [, sShapeName]) this function first writes the header row specified by the ELS-Row

sRowName (and optionally by ELS-Shape sShapeName subsection of

the ELS-Row), and then it adds this header row to the internal

column-headers pattern collection object.

EndHeader(sRowName [, sShapeName]) this function marks off the header row specified by the ELS-Row

sRowName (and optionally by ELS-Shape sShapeName subsection of

the ELS-Row) from the internal column-headers pattern collection

object.

We summarize next the rules involved in the manipulation of column-headers pattern. In particular, header rows

must behave according to the following rules:

1. There are several ways to define header rows in an ELS-Row specification, we may include both HDR and

FLD elements in the same <C> tags of a single <L> tag, or in the <C> tags of two or more different <L>

tags. The second method is desirable especially when the background properties of the HDR and FLD

elements need to be different or their column structure more independent.

2. We may include FLD elements along with HTML elements inside HDR elements.

3. A header row may span over more than a single <L> line, just as the field or data rows do.

4. A header row consisting of multiple <L> lines, behaves as a single indivisible unit with respect to page

mechanisms. Therefore such a header row will not be split across pages.

5. To implement column-header lines that do split across pages, the user may use several header rows each

consisting of a single <L> line.

6. The writing of the header rows in the report output are controlled via explicit use of BeginHeader and

EndHeader functions.

7. By default, a header row is repeated automatically at the beginning of the subsequent pages after the

corresponding BeginHeader call, provided the corresponding EndHeader function is not called prior to the

occurrence of the new page event.

8. An ELS-Row that contains only HDR or HTML elements is called a pure header row specification. For

Chapter 2

54 Copyright  2003-2004, Epsilon-Logic Systems

such a row specification calling ResultRow or ResultRows will have no effect on the report output. A pure

header row specification may be used to associate a header row with a data row with completely different

column structure.

9. An ELS-Row that contains no HDR elements is called a header-less row specification. For such a row

specification calling BeginHeader will have no effect on the report output.

We consider next a report consisting of a parent data set, with each record of this parent data set possessing a

detailed child data set. For this example we use a data shape consisting of Orders and [Order Details] tables. To

learn how to build data shape commands we invite the user to read the sections in Chapter 1 relating to data

shapes. Therefore, for the current example, we may assume that a data shape object corresponding to Orders and

[Order Details] exists in the Datashapes child node of the AUX node of the Project Explorer pane. From the

Project Explorer pane use the popup menu commands to copy and paste a copy of the Report2.ELS file into the

project (assuming that MyProj1 report project is open in the Report Designer application). Then rename this new

report file as Report3.ELS, and open it in the SCRIPT Editor window. The first thing we will do is to remove the

@MyOrders data source declaration and definition (i.e. the SET statement). Also, empty the ELS-RDETAIL report

section so that we can start from fresh.

In the Project Explorer pane, expand the MyNWDB connection node under the Databases node, then expand the

child node AUX, finally expand the Datashapes child node of the AUX node. Recall that we have assumed that a

data shape, say OrdersShp was already created. Therefore, drag-drop the existing OrdersShp data shape into the

script, at the end of the section defined by the <ELS_RSETTINGS> and </ELS_RSETTINGS> tags. This will result to

the following code:

<ELS_RSETTINGS>
 SET REPORT_TITLE = "Report Title";
 SET PAGE_ORIENTATION = ELS_PORTRAIT;
 SET PAGE_SIZE = ELS_LETTER;
 SET PAGE_SOURCE = ELS_UPPER;
 SET PAGE_MARGINS.LEFT = 0.5;
 SET PAGE_MARGINS.RIGHT = 0.5;
 SET PAGE_MARGINS.TOP = 0.75;
 SET PAGE_MARGINS.BOTTOM = 0.5;
 SET DEFAULTMODE = ELS_FAST;
 SET SUPPRESS_PHEADER.FIRSTPAGE = TRUE;
 SET SUPPRESS_PFOOTER.FIRSTPAGE = TRUE;

 DECLARE @OrdersShp DATASOURCE;
 SET @OrdersShp = "SHAPE " +
 "{SELECT " +
 "* " +
 "FROM " +
 "Orders} AS Orders " +
 "APPEND " +
 "(" +
 "{SELECT " +
 "* " +
 "FROM " +
 "[Order Details] } AS OrdDetails " +
 "RELATE " +
 "OrderID TO OrderID " +
 ") AS OrdDetails";

 // this data source variable is needed for the child column of the data shape
 DECLARE @OrdDetails DATASOURCE;

</ELS_RSETTINGS>

Also note that we have declared a new DATASOURCE variable @OrdDetails to be used for the child column of the

data shape command.

In our next step, we like to define a parent row consisting of multiple lines on which fields OrderID, OrderDate,

RequiredDate, ShippedDate, ShipVia, Freight, as well as, shipping address information are arranged with field

names (indicated in bold text), together with the corresponding data values (indicated by grey background):

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 55

 ORDER ID: 10248 SHIPPING INFORMATION:

 ORDER DATE: 07/04/1996 Vins et alcools Chevalier

 REQUIRED DATE: 08/01/1996 59 rue de l'Abbaye

 SHIPPED DATE SHIP VIA FREIGHT Reims, CA_X 51100
 07/16/1996 3 $32.38 France

Observe that such a tabular presentation may be achieved via an ELS-Row consisting of three ELS-Lines of 3

columns and two ELS-Lines of 4 columns. Therefore, call the Insert ELS-Row window via the ELS Row menu

command of the Insert menu, and in this window first add an ELS-Line with 3 columns. After resizing columns

properly, duplicate this ELS-Line twice to form the three desired lines. Then add an ELS-Line with 4 columns,

resize properly and then duplicate to complete the whole ELS-Row structure. When all the lines are arranged and

the Insert ELS-Row window submitted, the following script will be inserted at the cursor location in the

ELS_RDETAIL report section:

<ELS_ROW NAME="ELSRow1">
 <L border="0" CellSpacing="0" CellPadding = "0" WIDTH="100%" HEIGHT="15">
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="17%">

 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="27%">

 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="56%">

 </C>
 </L>
 <L border="0" CellSpacing="0" CellPadding = "0" WIDTH="100%" HEIGHT="15">
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="17%">

 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="27%">

 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="56%">

 </C>
 </L>
 <L border="0" CellSpacing="0" CellPadding = "0" WIDTH="100%" HEIGHT="15">
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="17%">

 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="27%">

 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="56%">

 </C>
 </L>
 <L border="0" CellSpacing="0" CellPadding="0" WIDTH="100%" HEIGHT="15">
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="17%">

 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="10%">

 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="17%">

 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="56%">

 </C>
 </L>

<L border="0" CellSpacing="0" CellPadding="0" WIDTH="100%" HEIGHT="15">
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="17%">

 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="10%">

 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="17%">

Chapter 2

56 Copyright  2003-2004, Epsilon-Logic Systems

 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="56%">

 </C>
 </L>
</ELS_ROW>

Note that, the Insert ELS-Row window did not insert ResultRow calls since we did not uncheck the Only ELS-

Row Spec checkbox control, and therefore as a result it only inserted ELS-Row specification.

Next we type in the field labels wherever applicable and insert the desired fields from the @OrdersShp data source

via the Data Fields window. So that for example the script of the parent row may look like the following:

<ELS_ROW NAME="ELSRow1">
 <L border="0" CellSpacing="0" CellPadding = "0" WIDTH="100%" HEIGHT="15">
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="17%">
 ORDER ID:
 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="27%">
 <FLD>Format(@OrdersShp.Column("OrderID"), "")</FLD>
 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="56%">
 SHIPPING INFORMATION:
 </C>
 </L>
 <L border="0" CellSpacing="0" CellPadding = "0" WIDTH="100%" HEIGHT="15">
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="17%">
 ORDER DATE:
 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="27%">
 <FLD>Format(@OrdersShp.Column("OrderDate"), "mm/dd/yyyy")</FLD>
 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="56%">
 <FLD>@OrdersShp.Column("ShipName")</FLD>
 </C>
 </L>
 <L border="0" CellSpacing="0" CellPadding = "0" WIDTH="100%" HEIGHT="15">
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="17%">
 REQUIRED DATE:
 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="27%">
 <FLD>Format(@OrdersShp.Column("RequiredDate"), "mm/dd/yyyy")</FLD>
 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="56%">
 <FLD>@OrdersShp.Column("ShipAddress")</FLD>
 </C>
 </L>
 <L border="0" CellSpacing="0" CellPadding="0" WIDTH="100%" HEIGHT="15">
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="17%">
 SHIPPED DATE
 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="10%">
 SHIP VIA
 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="17%">
 FREIGHT
 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="56%">
 <FLD>@OrdersShp.Column("ShipCity")</FLD>,
 <FLD>@OrdersShp.Column("ShipRegion")</FLD>
 <FLD>@OrdersShp.Column("ShipPostalCode")</FLD>
 </C>
 </L>

<L border="0" CellSpacing="0" CellPadding="0" WIDTH="100%" HEIGHT="15">
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="17%">
 <FLD>Format(@OrdersShp.Column("ShippedDate"), "mm/dd/yyyy")</FLD>
 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="10%">
 <FLD>Format(@OrdersShp.Column("ShipVia"), "")</FLD>
 </C>

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 57

 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="17%">
 <FLD>Format(@OrdersShp.Column("Freight"), "$#,##0.00")</FLD>
 </C>
 <C BGCOLOR="palegoldenrod" HEIGHT="15" WIDTH="56%">
 <FLD>@OrdersShp.Column("ShipCountry")</FLD>
 </C>
 </L>
</ELS_ROW>

Next, we apply the Insert ELS-Row again to insert a row specification for [Order Details] part of the data

shape. This ELS-Row will consist of just a single ELS-Line and will display the following fields: ProductID,

UnitPrice, Quantity and Discount. Since we also want an indentation at the beginning of each record, this ELS-

Row must have 5 columns. Using the Insert ELS-Row window together with the Data Fields window, we insert

the following script at a location after the "ELSRow1" row specification:

<ELS_ROW NAME="ELSRow2">
 <L border="0" CellSpacing="0" CellPadding="0" WIDTH="100%" HEIGHT="15">
 <C bgColor="#FFFACD" WIDTH="20%" HEIGHT="15">
 <HDR> </HDR> // this column is for indentation
 </C>
 <C bgColor="#FFFACD" WIDTH="20%" HEIGHT="15">
 <HDR>ProductID</HDR>
 </C>
 <C bgColor="#FFFACD" WIDTH="20%" HEIGHT="15">
 <HDR>Unit Price</HDR>
 </C>
 <C bgColor="#FFFACD" WIDTH="20%" HEIGHT="15">
 <HDR>Quantity</HDR>
 </C>
 <C bgColor="#FFFACD" WIDTH="20%" HEIGHT="15">
 <HDR>Discount</HDR>
 </C>
 </L>
 <L border="0" CellSpacing="0" CellPadding="0" WIDTH="100%" HEIGHT="15">
 <C WIDTH="20%" HEIGHT="15">
 // this column is for indentation
 </C>
 <C WIDTH="20%" HEIGHT="15">
 <FLD>Format(@OrdDetails.Column("ProductID"), "")</FLD>
 </C>
 <C WIDTH="20%" HEIGHT="15">
 <FLD>Format(@OrdDetails.Column("UnitPrice"), "$#,##0.00")</FLD>
 </C>
 <C WIDTH="20%" HEIGHT="15">
 <FLD>Format(@OrdDetails.Column("Quantity"), "#,##0")</FLD>
 </C>
 <C WIDTH="20%" HEIGHT="15">
 <FLD>Format(@OrdDetails.Column("Discount"), "$#,##0.00")</FLD>
 </C>
 </L>
</ELS_ROW>

Finally, we need to call the HDR and ResultRow functions inside prescribed iteration controls. The following

SCRIPT code will iterate over all the records of @OrdersShp recordset, writing a parent record followed by

iteration over the child recordset defined by OrdDetails child command of the data shape.

<ELS>

WHILE NOT @OrdersShp.Eof()
 ResultRow("ELSRow1");
 SET @OrdDetails = @OrdersShp.Child("OrdDetails");

 BeginHeader("ELSRow2"); // write the header row associated with ELSRow2
 WHILE NOT @OrdDetails.Eof()
 ResultRow("ELSRow2");
 @OrdDetails.Next();
 END LOOP
 EndHeader("ELSRow2");

Chapter 2

58 Copyright  2003-2004, Epsilon-Logic Systems

 @OrdersShp.Next();
END LOOP

</ELS>

Note the use of the BeginHeader and EndHeader functions, which define the scope of the header row specified by

"ELSRow2". So that whenever the iteration over the @OrdDetails recordset meets a new page, this header row will

be automatically written at the beginning of the new page.

Using Auto-Align Wizard

In the previous section, we created a sample report script using data shape command as data source, presenting the

information in the Orders and Order Details tables via a 5-lined ELS-Row element. In such situations, especially

when several multilined ELS-Row elements are used, sometimes after some resize operations column alignments

between HDR-lines and FLD-lines become out of synch. Moreover, utilizing resize operations in the Design view

along with the Precision Resizer tool will get the columns approximately aligned, but sometimes we really need

these alignment to be precise to the last pixel unit. For such purposes, we may use the Auto-align Wizard.

The Auto-align Wizard may be initiated in the Source view by placing the cursor anywhere between the <L> and

</L> tags, or anywhere between the <TR> and </TR> tags, then using the right-mouse-button click method prompt

the popup menu, and from this popup menu select the Select for Auto-Align menu command. This action will

display the Auto-align Wizard modeless window with the <L> or <TR> element selected in the auto-alignment list-

box. Subsequent repetion of this same action on different <L> or <TR> elements will simply add the element into

the auto-alignment list-box provided these elements have the same number of columns as the topmost item in the

auto-alignment list-box. For example, Figure 2.21 depicts the selection of the first three <L>-elements of the

“ELSRow1” ELS-Row element in the sample report script of the previous section:

Figure 2.21Figure 2.21Figure 2.21Figure 2.21.... Showing the Auto-align Wizard window

Once the desired line elements are inserted into the auto-alignment list-box of the Auto-align Wizard window, the

user may automatically align all the columns of these line elements by simply clicking the Auto-Align button. This

action will make the columns of all lines in the list-box to have respectively the same column structure as that of

the topmost item in the auto-alignment list-box. In other words, the topmost entry of the list-box of Auto-align

Wizard window serves as a guide for all other line element entries in the list-box. Note that closing the dialog will

clear this list and close the window, while the Clear button will empty this list-box.

Format and Conversion Function

We have used the Format function on several occasions in the sample codes that were used for the illustration of

most of the concepts covered so far. It is about time to define this function in a more formal manner. This function

is essentially used to convert data values from non-character data types into character types, and therefore has the

following syntax:

 VARCHAR Format(expression, format_spec)

where expression may be a valid SCRIPT expression of any data type, and format_spec is a character string

specifying a valid format of the returned string. The rules for a valid format specification string depend on the data

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 59

type of the expression. In particular, this expression may have numeric, date-time or character data types, and for

each of these categories the format specification has a separate set of rules. We begin by outlining the rules for

date-time data types. For expressions that have date-time data types, the format_spec must be a combination of

the following format characters:

Date-Time Format Spec Description

d Display the day as number with no leading zero (e.g. 1, 2, … , 31)

dd Display the day as number with leading zero (e.g. 01, 02, … , 31)

ddd, DDD Display the name of the day in abbreviated form (e.g. Sun, Mon, etc., or SUN, MON, etc., if

uppercase format characters are used)

dddd, DDDD Display the full name of the day (e.g. Sunday, Monday, etc., or SUNDAY, MONDAY, etc., if

uppercase format characters are used)

w Display the day of the week as number (e.g. 1 for Sunday, ... , 7 for Saturday)

ww Display the week of the year as number (e.g. 1, 2, ... , 52)

m Display the month as number with no leading zero (e.g. 1, 2, ... , 12)

mm Display the month as number with leading zero (e.g. 01, 02, ... , 12)

mmm, MMM Display the name of the month in abbreviated form (e.g. Jan, Feb, etc., or JAN, FEB, etc., if

uppercase format characters are used)

mmmm, MMMM Display the full name of the month (e.g. January, February, etc., or JANUARY, FEBRUARY,

etc., if uppercase format characters are used)

q Display the quarter of the year (e.g. 1, 2, 3, 4)

y Display the day of the year (1, 2, ... , 366)

yy Display the year as 2-digit number (00, 01, ... , 99)

yyyy Display the year as 4-digit number (100, 101, ... , 9999)

h Display the hour as a number with no leading zero (0, 1, ... , 23)

hh Display the hour as a number with leading zero (00, 01, ... , 23)

n Display the minute as a number with no leading zero (0, 1, ... , 59)

nn Display the minute as a number with leading zero (00, 01, ... , 59)

s Display the second as a number with no leading zero (0, 1, ... , 59)

ss Display the second as a number with leading zero (00, 01, ... , 59)

am, AM Use the 12-hour clock and display am, pm (or AM, PM if uppercase format characters are used)

Table 2.6. Date-time format specification characters

For example, let us consider the following format specifications for the date-time November 8, 1957 at 3:45:33

PM:

 "dd-MMM-yy" 08-NOV-57

"dd-mmm-yy" 08-Nov-57
 "mmm d, yyyy" Nov 8, 1957
 "mmmm d, yyyy" November 8, 1957
 "hh:nn:ss" 15:45:33
 "hh:nn AM" 03:45 PM
 "dddd d, mmmm yyyy" Friday 8, November 1957
 "w, ww, y, q" 6, 45, 312, 4

Observe that this date-time was a Friday, in the 45
th
 week, the 312

th
 day of the last quarter of the year 1957.

For numeric expressions the format_spec must be a combination of the following format characters:

Chapter 2

60 Copyright  2003-2004, Epsilon-Logic Systems

Numeric Format Spec Description

0 Digit placeholder; displays a digit or zero

Digit placeholder; displays a digit or nothing

. Decimal placeholder; determines how many digits to be displayed after the decimal point

% Percentage placeholder; the expression is multiplied by 100 and the percent symbol is

inserted at the location of the % character in the format specification

, Thousand separator; indicates to format the number with thousand separators when used in

front of the format specification. Otherwise when used at the end of the specification string it

rounds the number in thousands

E-, E+ Scientific format; indicates to format the number in scientific notation

X, x Hex digit place holder, converts an integer to its hexadecimal code with leading zeros

Table 2.7. Numeric format specification characters

Here are some examples of format specification string for the numeric (say float data type) value

5238983.7654387:

 "" 5238983.765439
 "00000000" 05238984
 "$0.00" $5238983.77
 "0.00" 5238983.77
 "0.000000" 5238983.765439
 "#,###,##0" 5,238,984
 "##0,," 5
 "#," 5239
 "0.00%" 523898376.54%
 "0.00E+00" 5.24E+06
 "00.00E-00" 52.39E05
 "XXXXXX" 4FF0C7
 "xxxxxxxx" 004ff0c7

Finally, for character string expressions the format_spec must be a combination of the following format

characters:

String Format Spec Description

@ Character place holder; displays a character or space, this placeholders are filled from right to left, to

force left to right precede the string with the ! character

? Character place holder; displays a character or the HTML character-code for space, this placeholders

are filled from right to left, to force left to right precede the string with the ! character

& Character place holder; displays a character or nothing, this placeholders are filled from right to left,

to force left to right precede the string with the ! character

< Force lower case characters

> Force upper case characters

! Force left to right fill of placeholders

Table 2.8. String format specification characters

For example, the following format specifications yield the corresponding effect on the right:

Format("Nemo", "@@@@@@@@@@@@@@") " Nemo"
Format("Nemo", "&&&&&&&&&&&") "Nemo"
Format("Nemo", "!@@@@@@@@@@@@@@") "Nemo "
Format("Nemo", ">&&&&&&&&&&&&") "NEMO"

Note that since in HTML standard the space characters are ignored (with the exception of one space), the Format

function internally returns " " for each space placeholders provided we use the "?" format specification

symbol instead of the "@" symbol. So for example, the Format("Nemo", "??????????????") returns the value:

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 61

" Nemo"

which in HTML has the effect of forcing the space character padding.

Although, the SCRIPT engine implicitly converts a valid date-time values defined by character strings into

DATETIME data type, nevertheless, it is sometimes necessary to explicitly convert a character string or numeric

value into DATETIME data type value. In this case, the SCRIPT language has the ToDate conversion function, which

has the following syntax:

 DATETIME ToDate(expression, format_spec)

where expression is any valid expression of character string or numeric type, and format_spec is defined by a

combination of format specification characters that depend on the data type of the expression. For character string

expressions, the format_spec must be a combination of the following format specification characters:

Format Spec Description

D Expected the day as number with no leading zero (1, 2, ... , 31)

Dd Expected the day as number with leading zero (01, 02, ... , 31)

M Expected the month as number with no leading zero (1 through 12)

Mm Expected the month as number with leading zero (01 through 12)

mmm, MMM Expected the name of the month in abbreviated form (Jan, Feb, etc.)

mmmm, MMMM Expected the full name of the month (January, February, etc.)

Yy Expected the year as 2-digit number (00, 01, ... , 99)

Yyyy Expected the year as 4-digit number (100, 101, ... , 9999)

H Expected the hour as number with no leading zero (o, 1, ... , 23)

Hh Expected the hour as number with leading zero (o0, 01, ... , 23)

N Expected the minute as number with no leading zero (0, 1, ... , 59)

Nn Expected the minute as number with leading zero (00, 01, ... , 59)

S Expected the second as number with no leading zero (0, 1, ... , 59)

Ss Expected the second as number with no leading zero (00, 01, ... , 59)

am, AM Expected the AM or PM in the 12-hour clock

Table 2.9. String format specification for ToDate function

For example, for the following input date-time values the expected format specification string is given on the right:

 "07-JAN-03" "dd-MMM-yy"
 "07-Jan-2003" "dd-mmm-yyyy"
 "January 7, 2003" "mmmm d, yyyy"
 "January 7, 2003 13:33:05" "mmmm d, yyyy hh:nn:ss"
 "01/07/03 01:33:05 PM" "mm/dd/yy hh:nn:ss AM"

Obviously, given the capability of the SCRIPT engine for the implicit conversion of date-time values from string

expressions to DATETIME data type, the ToDate function with the above outlined format specification is not very

useful. In the case of numeric expressions however, the ToDate function is more useful. In this later case the

format specification is given by the following enumeration:

Format Spec Description

YY or year Will interpret the numeric value as the number of years starting from the initial date 01/01/1900.

QQ or quarter Will interpret the numeric value as the number of quarters starting from the initial date 01/01/1900.

Chapter 2

62 Copyright  2003-2004, Epsilon-Logic Systems

MM or month Will interpret the numeric value as the number of months starting from the initial date 01/01/1900.

WK or week Will interpret the numeric value as the number of weeks starting from the initial date 01/01/1900.

DD or day Will interpret the numeric value as the number of days starting from the initial date 01/01/1900.

HH or hour Will interpret the numeric value as the number of hours starting from the initial date 01/01/1900.

MI or minute Will interpret the numeric value as the number of minutes starting from the initial date 01/01/1900.

SS or second Will interpret the numeric value as the number of seconds starting from the initial date 01/01/1900.

MS or millisecond Will interpret the numeric value as the number of milliseconds starting from the initial date
01/01/1900.

Table 2.10. Format specification for ToDate function in the case of numeric expressions

For the numeric value 3141 the following example illustrates the usage:

year 5040/12/30 00:00:00.000
month 2161/09/30 00:00:00.000
YY 5040/12/30 00:00:00.000
QQ 2685/03/30 00:00:00.000
MM 2161/09/30 00:00:00.000
WK 1960/03/12 00:00:00.000
DD 1908/08/06 00:00:00.000
HH 1900/05/09 21:00:00.000
MI 1900/01/01 04:21:00.000
SS 1899/12/30 00:52:21.000
MS 1899/12/30 00:00:03.141

Finally, we should remark that the format specification argument of the ToDate function is optional and may be

skipped. In which case, the default interpretation will be assumed. This default format interpretation is

"mm/dd/yyyy" for character string expressions, and DD for numeric expressions. For example, ToDate(3141) will be

interpreted as ToDate(3141, DD).

The SCRIPT language has a conversion function similar to SQL Server, namely the Cast function. This function

has the following syntax:

 Cast(expression AS data_type)

where expression may be an expression of any data type, and the returned value will have data type specified by

the data_type. For example,

DECLARE @nVar INT;

SET @nVar = Cast("5637" AS INT);
SET @nVar = @nVar + 32; // @nVar now has the integer value of 5669

We should emphasize that the SCRIPT engine has complete set of internal conversion mechanisms, which in most

cases succeeds in implicit conversion of data values between compatible data types. For example, the above result

could have been achieved with the following alternative method:

DECLARE @nVar INT;

SET @nVar = "5637";
SET @nVar = @nVar + 32; // @nVar now has the integer value of 5669

In some ambiguous circumstances though, the Cast function may come very handy.

Functions and Macros

The SCRIPT language has a rich collection of functions, which may be organized into the following categories:

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 63

� String functions,

� Date/time functions,

� Conversion functions,

� Mathematical functions,

� Special functions.

In this section, we will list these functions together with their respective definitions and usage. We start this listing

with string functions:

ASCII(sExpression) this function returns an integer representing the character code

corresponding to the first letter in the character string sExpression.

Usage: ASCII("A") which equals to 65.

CHR(nCharCode) this function returns the character corresponding to the character code

specified by the argument nCharCode. Note that the return is always an

ASCII character, which may not be supported in the HTML standards. To

force the returned to be a string representing the HTML character code

equivalent to the desired ASCII character, you may use the H() function.

Usage: CHR(65) which equals to "A".

H(sExpression) this function translates the special ASCII characters in the string into

HTML character codes.

 Usage: H(" ") which equals to " ".

ESCAPEURL(sString) this function encodes all URL unsave characters to the corresponding

escape sequences.

Usage: ESCAPEURL("a&b%#!'") which equals to "a%26b%25#!'".

UNESCAPEURL(sString) this function decodes all URL encoded characters back to normal form.

Usage: ESCAPEURL("a%26b%25#!'") which equals to "a&b%#!'".

FORMAT(Expression, sFormatSpec) this function was already defined in the previous sections.

LEFT(sString, nCount) this function returns a substring of sString of length nCount, starting from

the left side of the string.

 Usage: LEFT("PM57U8938", 4) which equals to "PM57"

LEN(sString) this function returns the length of the string sString.

 Usage: LEN("PM57U8938") which equals to 9.

LOWER(sString) this function returns the value of sString in lower case characters.

 Usage: LOWER("CaLifoRnia") which equals to "california".

LTRIM(sString) this function returns the value of sString with left side trimmed off space

characters.

Usage: LTRIM(" BUSSINESS") which equals to "BUSSINESS".

REPEAT(sString, nCount) this function returns a string comprising of the string sString repeated

nCount times.

Usage: REPEAT("Sorry, ", 3) equaling to "Sorry, Sorry, Sorry, ".

REVERSE(sString) this function returns a string formed by reversing the characters of the

string sString.

Usage: REVERSE("Dracula") which equals to "alucarD".

RIGHT(sString, nCount) this function returns a substring of sString obtain by the nCount last

characters.

Usage: RIGHT("PM57U8938", 5) which equals to "U8938"

Chapter 2

64 Copyright  2003-2004, Epsilon-Logic Systems

RTRIM(sString) this function returns the value of sString with right side trimmed off space

characters.

Usage: RTRIM("BUSSINESS ") which equals to "BUSSINESS".

SPACE(nCount) this function returns a string comprising of " " repeated nCount

times. Note that " " is the space character coding in HTML.

 Usage: SPACE(3) which is equal to " ".

TRIM(sString) this function returns the value of sString with left and right sides trimmed

off space characters.

Usage: TRIM(" BUSSINESS ") which equals to "BUSSINESS".

SUBSTR(sString, nPos, nLen) this function returns the substring of sString starting at position nPos with

length nLen.

Usage: SUBSTR("PM57U8938", 3, 5) which is equal to "57U89".

FIND(sString, sFind, nStart) this function returns the position of the first occurrence of the sFind string

in the sString string, starting from position nStart.

Usage: FIND("AbSced", "Sc") which is equal to 2,

 FIND("abcfabed", "ab", 1) which is equal to 4.

REPLACE(sString, sFind, sReplace) this function returns the string sString with all occurrences of the sFind

string replaced with sReplace string.

Usage: REPLACE("xyen xyich xyat","xy","wh") which is equal to

"when which what".

UPPER(sString) this function returns the value of sString in upper case characters.

 Usage: UPPER("CaLifoRnia") which equals to "CALIFORNIA".

We outline next the date/time functions, but first we will need the following date-part enumeration table:

Date-Part Abbreviation Enumeration Unit Type

Year YY 1 Year
Quarter QQ 2 Quarter
Month MM 3 Month
Week WK 4 Week
Dayofyear DY 5 Day of year
Day DD 6 Day
Weekday DW 7 Week day
Hour HH 8 Hour
Minute MI 9 Minute
Second SS 10 Second
Millisecond MS 11 Millisecond
Table 2.11. Date-part enumeration

DATEADD(DatePart, nCount, dtDate) this function returns a date-time value based on adding an interval

to the specified date-time dtDate. The DatePart argument

determines what type of date-time units must be added, while

nCount defines the interval. Possible values for DatePart are

defined by the items 1 through 11 of the Table 2.11 except 5 and 7,

and may be specified in Date-Part, Abbreviation or Enumeration

methods.

Usage: Given that @dtV is a variable of type DATETIME,

DATEADD(DD, 3, @dtV) to add 3 days to date-time @dtV,

DATEADD(MM, 3, @dtV) to add 3 months to date-time @dtV,

DATEADD(HH, 3, @dtV) to add 3 hours to date-time @dtV,

DATEADD(week, 3, @dtV) to add 3 weeks to date-time @dtV,

DATEADD(2, 3, @dtV) to add 3 quarters to date-time @dtV.

DATEDIFF(DatePart, dtDate1, dtDate2) this function returns the DatePart difference between the two

date-time values as a decimal number. Again, possible values for

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 65

DatePart are defined by the items 1 through 11 of the Table 2.11

except 5 and 7, and may be specified in Date-Part, Abbreviation or

Enumeration methods.

Usage: DATEDIFF(DD, @dtV1, @dtV2) to get the day difference

between date-time @dtV1 and @dtV2.

DATENAME(DatePart, dtDate) this function returns the DatePart name of a date-time value.

Possible values for DatePart are defined by the items 1 through 11

of the Table 2.11, and may be specified in Date-Part, Abbreviation

or Enumeration methods.

Usage: If @dtV = "2003-03-21 20:56:42.550", then

DATENAME(YY, @dtV) equals 2003,

DATENAME(QQ, @dtV) equals 1,

DATENAME(MM, @dtV) equals March,

DATENAME(WK, @dtV) equals 12,

DATENAME(DD, @dtV) equals 21,

DATENAME(HH, @dtV) equals 20,

DATENAME(MI, @dtV) equals 56,

DATENAME(SS, @dtV) equals 42,

DATENAME(MS, @dtV) equals 550,

DATENAME(DW, @dtV) equals Friday,

DATENAME(DY, @dtV) equals 80.

DATEPART(DatePart, dtDate) this function returns the DatePart date-part of a date-time value.

Possible values for DatePart are defined by the items 1 through 11

of the Table 2.11, and may be specified in Date-Part, Abbreviation

or Enumeration methods.

Usage: If @dtV = "2003-03-21 20:56:42.550", then

DATEPART(YY, @dtV) equals 2003,

DATEPART(QQ, @dtV) equals 1,

DATEPART(MM, @dtV) equals 3,

DATEPART(WK, @dtV) equals 12,

DATEPART(DD, @dtV) equals 21,

DATEPART(HH, @dtV) equals 20,

DATEPART(MI, @dtV) equals 56,

DATEPART(SS, @dtV) equals 42,

DATEPART(MS, @dtV) equals 550,

DATEPART(DW, @dtV) equals 6,

DATEPART(DY, @dtV) equals 80.

GETDATE() this function returns the current date-time of the system.

GETDAY(dtDate) this function returns an integer representing the day of a date-time.

Usage: If @dtV = "2003-03-21 20:56:42.550", then

 GETDAY(@dtV) equals 21.

GETMONTH(dtDate) this function returns an integer representing the month of a date-

time.

Usage: If @dtV = "2003-03-21 20:56:42.550", then

 GETMONTH(@dtV) equals 3.

GETYEAR(dtDate) this function returns an integer representing the year of a date-

time.

 Usage: If @dtV = "2003-03-21 20:56:42.550", then

 GETYEAR(@dtV) equals 2003.

TODATE(Expression, FormatSpec) this function converts an expression to date-time (it was described

in Format and Conversion Function section of the current

Chapter 2

66 Copyright  2003-2004, Epsilon-Logic Systems

chapter).

We now list the basic mathematical functions of the SCRIPT language:

ABS(Value) this function returns the absolute value of a numeric value.

 Usage: ABS(-3.22) equals 3.22.

ACOS(Radians) this function returns the arc-cosine of a numeric value given in radians between -1

and 1. For values outside this domain the function will return NULL.

 Usage: ACOS(0.9999) equals 1.41422534775121E-02.

ASIN(Radians) this function returns the arc-sine of a numeric value given in radians between -1

and 1. For values outside this domain the function will return NULL.

 Usage: ASIN(0.9999) equals 1.55665407331738.

ATAN(Radians) this function returns the arc-tangent of a numeric value in radians.

 Usage: ATAN(-45.01) equals -1.54858269620627.

CEILING(Value) this function returns the smallest integer greater or equal to the numeric value.

 Usage: CEILING(10.58) equals 11.

COS(Radians) this function returns the cosine of a numeric value given in radians.

 Usage: COS(3.14) equals -0.99999873172754.

COT(Radians) this function returns the cotangent of a numeric value given in radians.

 Usage: COT(3.14) equals -627.882397586913.

DEGREES(Radians) this function converts the value of angle from radians to degrees.

 Usage: DEGREES(3.14) equals 179.908899633625.

EXP(Value) this function returns the exponent of a numeric value.

 Usage: EXP(34) equals 583461742527455.

FLOOR(Value) this function returns the greatest integer less than or equal to a numeric value.

 Usage: FLOOR(10.58) equals 10.

LOG(Value) this function returns the natural logarithm of a numeric value.

 Usage: LOG(3.22) equals 1.16938135955632.

LOG10(Value) this function returns the base-10 logarithm of a numeric value.

 Usage: LOG10(3.22) equals 0.507855871695831.

PI() this function returns the constant value 3.14159265358979.

POWER(Base, Exponent) this function returns the power of the value of the Base to the Exponent.

 Usage: POWER(2, 3) equals 8.

RADIANS(Degrees) this function converts the value of the angle from degrees to radians.

 Usage: RADIANS(30) equals 0.523598333333333.

RAND(MaxValue) this function returns a random integer value between 0 and MaxValue.

 Usage: RAND(30) equals a random value between 0 and 30.

ROUND(Value, Precision [,Option]) this function rounds a numeric value to the prescribed Precision

decimal places when Option is not specified equals or when it is specified as 0.

When Option is 1, the function simply truncates to the decimal places specified by

Precision.

 Usage: ROUND(3.45675, 4) equals 3.4568,

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 67

 ROUND(3.45675, 4, 0) equals 3.4568,

 ROUND(3.45675, 4, 1) equals 3.4567.

SIGN(Value) this function returns an integer value indicating the sign of an expression.

 Usage: SIGN(-920) equals -1.

SIN(Radians) this function returns the sine of a numeric value given in radians.

 Usage: SIN(PI()/2) equals 0.99999999999912.

SQRT(Value) this function returns the square root of a numeric value.

 Usage: SQRT(2) equals 1.4142135623731.

TAN(Radians) this function returns the tangent of a numeric value given in radians.

 Usage: TAN(PI()/2) equals 753695.99514081.

Finally, we consider the rest of the special functions of SCRIPT language:

PAGENUM() this function returns the currently generating page number.

 Usage: PAGENUM()+ 2 equals 2 plus the current page number during the report

generation.

PAGECOUNT() this function returns the total number of pages of the generated report output. Note

that this special function must be used as a term by itself, it cannot be used as an

operand term or an argument to another function.

 Usage: Page <FLD>PAGENUM()</FLD> of <FLD>PAGECOUNT()</FLD>

EVALEXPR(String) this function returns the value of expression given as a string. The string argument

is evaluated as expression at run-time.

 Usage: In this example an expression is given as string and then evaluated by

calling this

EVALEXPR function:
 DECLARE @sExpression VARCHAR(100);
 DECLARE @fResult FLOAT;

 SET @sExpression = "SIN(PI()/2)*COS(PI()/2)";
 SET @fResult = EVALEXPR(@sExpression); // evaluated here

 Note that instead of the variable @sExpression, we could have a parameter option

variable, which can pass various expressions from the host application to be

evaluated at run-time by the SCRIPT engine.

VALUEAT(Variable, Event) this function returns the value of a pending variable, which is evaluated when the

specified event occurs. Possible values for the second argument are as follows:

 ELS_OnBeginPage,

 ELS_OnEndPage,

 ELS_OnBeginReport,

 ELS_OnEndReport.

 This function is very helpful in the implementation of running totals and summaries

of complex grouping. We will describe more details about this function in the

context of pending variables, in later sections of the current chapter.

 Usage: VALUEAT(@vVar, ELS_OnEndPage) will evaluate the variable @vVar at the

end of each page during the report generation.

SENDMESSAGE(Value) this function will raise an integer valued message in the host application through

event handler API functions. It could be used as a progress indicator in the host

application.

 Usage: SENDMESSAGE(0) which will send a message with 0 identifier number.

ISSET(Object) this function returns true if the Object argument is a valid non-null object,

otherwise it retruns false. The argument Object is any variable of object type

category in SCRIPT.

Chapter 2

68 Copyright  2003-2004, Epsilon-Logic Systems

 Usage: DECLARE @conn CONNECTION;
 DECLARE @ds DATASOURCE;
 ...

IF ISSET(@conn) THEN
 @ds.Connect(@conn);
END IF

COALESCE(Exp, AltExp) this function returns Exp if this expression is not null, otherwise it returns the

AltExp expression.

 Usage: SET @oN = @oNode.selectSingleNode(“price”);
 SET @sPrice = COALESCE(@oN.text, “0.00”);

Although the functions of the SCRIPT language are very much similar to the MS-SQL Server procedural language,

and therefore are very intuitive to use, nevertheless, the user may utilize the Expression Builder window and

Format/ Conversion Wizard, to define and insert functions into the SCRIPT Editor. The Expression Builder

window essentially comprises of the following four panes (see Figure 2.22 for more details):

 Fields/Variables which displays all the data fields and variables that are defined in the report script,

so that the user may drag-drop them into the Editor pane.

 Functions which displays all the SCRIPT functions categorized into mathematical, string,

date-time, conversion and special functions. The user may drag-drop any of these

functions into the Editor pane.

 Editor which is a fully developed SCRIPT editor, on its own, furnished with IntelliSense

support and basic edit operations.

 Usage this pane is an online help window outlining the usage of the function selected in

the Functions pane. It may be expanded or collapsed via the arrow button at the

bottom-left corner of the pane.

Figure 2.22Figure 2.22Figure 2.22Figure 2.22.... Showing the Expression Builder window together with the online help pane

The Format/Conversion Wizard dialog may be called from the Expression Builder window via the toolbar

button with the #-sign icon. In this window the user may select a format specification by selecting a predefined

format from the Format combo-box, or manually typing in the format specification character combination and

click the ENTER key to check the result in the Result Sample display-field (see Figure 2.23 for more details).

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 69

FigureFigureFigureFigure 2.23 2.23 2.23 2.23.... Showing the Format / Conversion Wizard dialog

The SCRIPT language has capabilities to define macros via pre-compile directives. Essentially, by pre-compile

directive we mean that prior the report compilation a substitution is performed to expand all definitions into the

primitives of the SCRIPT language and then perform compilation of the report. The pre-compile directives of the

SCRIPT language are as follows: #include, #define, #undef, #ifdef, #ifndef, #else and #endif. We describe

the usage of these directives next:

#include this is used to include the macros of an external ELS-file into the current script. The filename and

path information following this keyword must be on the same line.

Usage: The following example will include the definitions of file MyMacros.txt in the current script
#include "THIS_FILE\Include\MyMacros.txt"

#define this is used to define a macro. The macro name must follow the keyword on the same line, but the

definition may extend over multiple lines with each line ending with the "\" character.

Usage: The following example illustrates the usage:
#define MyFunction(X, Y, Z) X*X - 2*X*Y + Z

#undef this is used to undefine a macro name.

#ifdef this is used to check if a particular macro name is defined.

#ifndef this is used to check if a particular macro name is not defined.

#else this is used to check the else-condition of a conditional.

#endif this is used to end a conditional.

Note that pre-compile directives are intended to be used for short definitions or macros, it is not intended to be

used as report template reuse or duplication purposes. For report template reuse, please consult the Standard

Report Template meta-Language (SRTmL) or the SRT Wizards topics in Chapter 1 or technical articles web site.

Parameter Options

Most report engines have a fixed set of API functions, with which the developer may control various information

presented in the report. The fact that such API functions are predefined and fixed by design, sometimes constrains

the flexibility or amount of information in the report that may be controlled by the host application. In contrast, the

SCRIPT engine has a fixed set of API functions to handle the report initialization and generation, but in regards to

controlling the information in the reports, it is entirely user-definable. In fact, almost any element in a particular

report script may be controlled via report parameter options defined inside the report script itself. Report parameter

options are defined in a report script via the PARAM_OPTIONS construct, which can be declared only in the

ELS_QPARAMS report section using the following syntax:

 PARAM_OPTIONS
 [
 variable_1 datatype_1,
 variable_2 datatype_2,
 ...
 variable_N datatype_N
];

where variable_i are the names of variables of data types datatype_i, respectively for i =1, 2, ... , N. Note that

Chapter 2

70 Copyright  2003-2004, Epsilon-Logic Systems

unlike regular variable names the report parameter options variable names do not start with the symbol "@". This

convention was adopted to introduce some distinction between the names of regular variables and those of the

parameter options. This syntax does not preclude the usage of arrays for the variable names, so that arrays of

parameter option variables may be defined just like the regular variables.

In addition to the declaration section, a report parameter variable has the following optional properties:

 Nullable boolean type with default value FALSE, this indicates whether the parameter can assume

NULL value.

 AllowBlank boolean type with default value TRUE, this applies to parameters of character data types

only, and indicates whether the parameter is allowed to have empty string as a value.

 Prompt string type with default value equal to the name of the parameter itself, this will serve as a

label text for the parameter when called from the host application.

 MultiValue boolean type with default value FALSE, this indicates whether multiple values can be

assigned to the parameter from the host application. Note that if this property is set to TRUE,

then you must declare the parameter variable as an array with the maximum possible number

of values as the dimension of the array.

 DefaultValues variant type, this is used to define the default values for the parameter in the host

application. It can either be a sequence of comma separated values between curly brackets,

or a data source reference. We will describe more details about this property shortly.

 ValidValues variant type with default value NULL, this will define the content of a list in the host

application from which valid values may be selected. Each item consists of a pair of label

and data values. Just like the DefaultValues this property may also have a data source

reference for a value. We will see more details later on in this section.

 SourceType integer type with default value 0, indicates whether the ValidValues property is a list or a

data source reference. Possible values are 0 for list and 1 for data source.

 Value variant type, this is used to set or get the parameter’s value. This property is the default

property of the parameter.

Before describing more details about DefaultValues and ValidValues properties, we will first illustrate the usage

of report parameter options in some generic sample code in SCRIPT. In particular, the following code lines should

illustrate the usage of multi-valued parameters with explicitly listed valid values and default values:

<ELS_QPARAMS>
 PARAM_OPTIONS
 [
 var0 bit,
 var1 varchar(50),
 var2 int,
 var3(2) varchar(30)
];

 Var0.Prompt = "Have Insurance: ";
 Var0.DefaultValues = {1};

 var1.Prompt = "Last Name: ";
 var1.AllowBlank = FALSE;
 var1.DefaultValues = {"Smith"};

 var2.Prompt = "Family Size: ";
 var2.Nullable = TRUE;
 var2.ValidValues = {("No kids", 2), ("One kid", 3),
 ("Two kids", 4), ("Three kids", 5),
 ("Four kids", 6), ("Five kids", 7),
 ("Half a dozen kids", 8)};
 var2.DefaultValues = {3};

 var3.Prompt = "Select Options: ";

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 71

 var3.AllowBlank = FALSE;
 var3.MultiValue = TRUE;
 var3.ValidValues = {("Hearth Checkup","HC"),
 ("Diabetics Analysis","DA"),
 ("General Checkup","GC")};
 var3.DefaultValues = {"DA", "HC"};
</ELS_QPARAMS>

Observe that when we compile and run the report script that contains such listing of parameter options, the

following dialog prompts in the Report Designer (see Figure 2.24):

Figure 2.24.Figure 2.24.Figure 2.24.Figure 2.24. Showing the Evaluate Parameters dialog in Report Designer

Note that, in particular the Prompt property values appear as labels for the parameter options in the Evaluate

Parameters dialog. The ValidValues property values fill the combo-box and list-box respectively for the var2

and var3 variables. In fact, if a parameter can assume multi-values then it should be interpreted as a list-box,

otherwise it should be interpreted as a combo-box. Finally, observe that the valid values are defined via pairs, with

the first coordinate being the label to be displayed in the control of the host application, while the second

coordinate holds the actual value of the parameter to be passed from the host to the report engine.

In general, the value format of the DefaultValues property is as follows:

 variable.DefaultValues = {val_1, val_2, ... , val_N};

where val_j are values of data in the parameter’s data type (in particular, for single-valued parameters N = 1).

The value format of the ValidValues property is as follows:

 variable.DefaultValues = { (label_1, val_1), (label_2, val_2), ... , (label_M, val_M) };

where label_j are label texts and val_j the actual possible valid values.

In the previous code sample, we have assumed that default values and valid values are to be passed via explicit

lists. In fact, since the SourceType property was not specified the default value of 0 was assumed, which instructed

the report engine to construct the default values and valid values collections via the explicit list of items.

As we have mentioned that default values and valid values of report parameters may be alternatively specified via

data source references. In this case, the SourceType property must be set to 1, and a DATASOURCE object must be

defined prior to the definition of the parameter. The following code sample illustrates this usage:

<ELS_QPARAMS>
 PARAM_OPTIONS
 [
 var4 varchar(150)
];

 // define a data source

Chapter 2

72 Copyright  2003-2004, Epsilon-Logic Systems

 DECLARE @dsEmployees DATASOURCE;
 SET @dsEmployees = "SELECT lastname + ', ' + firstname EmployeeName, EmployeeID " +
 "FROM employees";

 var4.SourceType = 1; // use data source reference
 var4.Prompt = "Employee: ";
 var4.ValidValues = (@dsEmployees, "EmployeeName", "EmployeeID");
 var4.DefaultValues = (@dsEmployees, "EmployeeName", "EmployeeID");
</ELS_QPARAMS>

To define parameter options for a report, the user may edit directly in the SCRIPT Editor (i.e. Source view) with

the help of IntelliSense, or alternatively use the Parameter List sliding window to visually define the parameters

along with respective properties (or both methods). To slide-on the Parameter List window, simply click on the

Parameter List Window toolbar button in the Project Explorer pane. Figure 2.25 depicts the Parameter List

window for the sample code that used explicitly listed valid values:

Figure 2.25.Figure 2.25.Figure 2.25.Figure 2.25. Showing the Parameter List window

Essentially, this sliding window consists of an upper grid

and extended controls lower section. The upper grid

consists of the following columns:

Name to enter the parameter option variable

name,

Data Type to select the data type for the parameter

option variable,

Length to enter or display the length of the data

type,

Precision to enter or display the precision of the

data type (if applicable),

Scale to enter or display the scale of the data

type (if applicable),

Array Size to enter the array size if we are defining

an array of the variable.

Note that the Precision and Scale are applicable only for

numeric variables, while the Length is editable only

when defining character strings.

The appearance of the lower section of the Parameter

List window may vary depending on the data type of the

selected variable in the upper grid. Note that the controls

of this lower section are used to define the extended

properties of the parameter variable that is selected in the

upper grid.

In particular, if the parameter variable that is selected in the upper grid of the Parameter List window uses a list

source type, then the controls in the lower section of the window will look like those in Figure 2.25. In general,

these controls are as follows:

 Prompt edit-box to enter the value for the Prompt property of the selected parameter.

 Nullable check-box to define the value for the Nullable property of the selected parameter.

 Allow Blank check-box to define the value for the AllowBlank property of the selected parameter.

 Multi-Value check-box to define the value for the MultiValue property of the selected parameter.

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 73

 Source Type combo-box to define the value for the SourceType property of the selected parameter.

 Valid Values this control depends on the value selected in the Source Type and may be a grid with Add-

Delete toolbar, or a series of combo-boxes (we will describe more details shortly).

 Default Values this control depends on the values selected in Source Type and Multi-Value and may be an

edit-box, a grid with Add-Delete toolbar, or a series of combo-boxes (we will describe more

details shortly).

Figure 2.26.Figure 2.26.Figure 2.26.Figure 2.26. Showing the lower section with Multi-Value checked

Figure 2.27.Figure 2.27.Figure 2.27.Figure 2.27. Showing the lower section with Data Source selected

Now, if the user selects List in the Source Type combo-box and makes the Multi-Value check-box unchecked,

then the Valid Values control will become a grid with two columns Label and Value. On the upper-left corner of

this list you will see a small toolbar with the buttons Add, Delete, Move Up and Move Down. These buttons are

used to add a new row to the grid, to delete an existing row from the grid, or to move a row up or down one step.

The Default Values control on the other hand, will be a simple edit-box, in which the user may enter the value of

the DefaultValues property for the selected parameter.

Now, if the user makes the Multi-Value check-box checked, then the Default Values control will become a single

columned grid with the Add, Delete, Move Up and Move Down toolbar. This later case is depicted in Figure 2.26.

Finally, in the case when the Source Type control is set to Data Source, each of the Valid Values and Default

Values controls will become a combination of the following three combo-box controls:

 Data Set to define the data source reference,

 Label Field to define the display field for the parameter control in the host,

 Value Field to define the actual value field for the parameter.

In using the Parameter List window, observe that whenever this window becomes out of focus, it will

automatically slide-off, and the pending changes will update the ELS_QPARAMS section of the report.

Getting back to the Source view of the report script, note that, although the parameter options can only be declared

inside the ELS_QPARAMS section of a report, these parameters can be referenced from anywhere in the report

script just like any pure ELS-element. In this way, the parameter options behave like a user-definable interface

between elements inside a report script and the host application that needs to evaluate these parameter options.

Moreover, as we will see in Chapter 3, that the entire structure of the parameter options of a report may be exposed

to the host application via the GetParams() API function.

To illustrate the full usage of parameter options we make a copy of the Report2.ELS in the current report project,

Chapter 2

74 Copyright  2003-2004, Epsilon-Logic Systems

and then rename it as Report7.ELS. Now open this Report7.ELS file into the SCRIPT Editor, and perform the

following modifications.

Figure 2.28.Figure 2.28.Figure 2.28.Figure 2.28. Showing the

First, slide-on the Parameter List window by selecting the Parameter List menu item under the Tools menu. For

our sample, we need to define four parameter option variables: UseShipDate, ShipDate, ShipVia (array of size 2)

and ShipCountry. After entering the information into the upper grid of the Parameter List window (see Figure

2.28), click the slide-off arrow button on the top-right side of the window, to slide-off the Parameter List

window. This action will insert the following parameter options in the ELS_QPARAMS section of the report script:

PARAM_OPTIONS
[
 UseShipDate bit,
 ShipDate smalldatetime,
 ShipVia(2) varchar(8),
 ShipCountry varchar(50)

];
 ShipVia.DefaultValues = {""};
 ShipCountry.DefaultValues = {""};

The plan here is that we intend to pass parameters from the host application into this report, informing it whether

we want to use ShipDate as parameter, and if so what this date's value must be, or else what ShipVia and

ShipCountry values we want to pass to this report. So that, based on these parameter values the Orders report will

be generated.

To continue with the evaluation of the properties of the parameters switch back to the Parameter List window via

the slide-on button. In this window, select the UseShipDate parameter and set the Prompt control’s value to “Use

Ship Date: ”, also enter 1 in the Default Values edit-box. Similarly select the ShipDate parameter and set the

Prompt value to “Shipped Date: ”, and the Default Values to “01-01-1997”. Now slide-off the Parameter List

window to update the report script. This action will add the following additional lines:

 UseShipDate.Prompt = "Use Ship Date: ";
 UseShipDate.DefaultValues = {1};
 ShipDate.Prompt = "Shipped Date: ";
 ShipDate.DefaultValues = {"01-01-1997"};

Now, let us assume that the user requirements for the ShipVia and ShipCountry parameters must have selectable

lists in the host application, so that the end-user will simply select values from a predefined list of items instead of

direct keyboard entry. Moreover, for both of these parameters we want to use data source references. For example,

add the following Shippers data source declaration at the end of the parameter properties in the ELS_QPARAMS

section of the Source view:

DECLARE @Shippers DATASOURCE;
SET @Shippers = "SELECT * FROM Shippers";

Then click the slide-on button to slide on the Parameter List window. In this window, select the ShipVia

parameter in the upper grid, then set the Prompt value to “Ship Via: “, check the Multi-Value check-box, and set

the Source Type to Data Source. Note that the Valid Values and Default Values controls change to Data Set,

Label Field and Value Field combo-box combinations. For both properties respectively set the Data Set to

@Shippers value, the Label Field to CompanyName and Value Field to ShipperID. Sliding off the Parameter

List window will add the following lines in the ELS_QPARAMS section:

 ShipVia.Prompt = "Ship Via: ";
 ShipVia.MultiValue = TRUE;
 ShipVia.SourceType = 1;
 ShipVia.ValidValues = (@Shippers, "CompanyName", "ShipperID");

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 75

 ShipVia.DefaultValues = (@Shippers, "CompanyName", "ShipperID");

Similarly, for ShipCountry parameter, add the following data source to the end of the ELS_QPARAMS section and

slide on the Parameter List window:

 DECLARE @ShipCountries DATASOURCE;
 SET @ShipCountries = "SELECT DISTINCT ShipCountry FROM Orders";

In the upper grid of the Parameter List window select the ShipCountry parameter and set the Prompt control to

“Ship Country: “, the Source Type to Data Source and for both the Valid Values and Default Values

respectively set the Data Set to @ShipCountries, Label Field to ShipCountry, and Value Field to ShipCountry.

Sliding off the Parameter List window will add the following lines at the end of the ELS_QPARAMS section:

 ShipCountry.Prompt = "Ship Country: ";
 ShipCountry.SourceType = 1;
 ShipCountry.ValidValues = (@ShipCountries, "ShipCountry", "ShipCountry");
 ShipCountry.DefaultValues = (@ShipCountries, "ShipCountry", "ShipCountry");

In the Report7.ELS, after further manual editing in the ELS_QPARAMS and ELS_RSETTINGS sections we obtain

the following SCRIPT code:

<ELS_QPARAMS>
 // parameter options
 PARAM_OPTIONS
 [
 UseShipDate bit,
 ShipDate smalldatetime,
 ShipVia(2) varchar(8),
 ShipCountry varchar(50)
];

 UseShipDate.Prompt = "Use Ship Date: ";
 UseShipDate.DefaultValues = {1};
 ShipDate.Prompt = "Shipped Date: ";
 ShipDate.DefaultValues = {"01-01-1997"};

 DECLARE @Shippers DATASOURCE;
 SET @Shippers = "SELECT * FROM Shippers";

 ShipVia.Prompt = "Ship Via: ";
 ShipVia.MultiValue = TRUE;
 ShipVia.SourceType = 1;
 ShipVia.ValidValues = (@Shippers, "CompanyName", "ShipperID");
 ShipVia.DefaultValues = (@Shippers, "CompanyName", "ShipperID");

 DECLARE @ShipCountries DATASOURCE;
 SET @ShipCountries = "SELECT DISTINCT ShipCountry FROM Orders";

 ShipCountry.Prompt = "Ship Country: ";
 ShipCountry.SourceType = 1;
 ShipCountry.ValidValues = (@ShipCountries, "ShipCountry", "ShipCountry");
 ShipCountry.DefaultValues = (@ShipCountries, "ShipCountry", "ShipCountry");
</ELS_QPARAMS>

<ELS_RSETTINGS>
 SET REPORT_TITLE = "Report Title";
 SET PAGE_ORIENTATION = ELS_PORTRAIT;
 SET PAGE_SIZE = ELS_LETTER;
 SET PAGE_SOURCE = ELS_UPPER;
 SET PAGE_MARGINS.LEFT = 0.5;
 SET PAGE_MARGINS.RIGHT = 0.5;
 SET PAGE_MARGINS.TOP = 0.75;
 SET PAGE_MARGINS.BOTTOM = 0.5;
 SET DEFAULTMODE = ELS_FAST;
 SET SUPPRESS_PHEADER.FIRSTPAGE = TRUE;
 SET SUPPRESS_PFOOTER.FIRSTPAGE = TRUE;

 DECLARE @MyOrders DATASOURCE;
 DECLARE @sSQL VARCHAR(1000);

Chapter 2

76 Copyright  2003-2004, Epsilon-Logic Systems

 // define the @sSQL string depending on the value of the parameter options
 SET @sSQL = "SELECT " +
 "OrderID, " +
 "OrderDate, " +
 "ShippedDate, " +
 "ShipName, " +
 "ShipAddress " +
 "FROM " +
 "Orders ";
 // if UseShipDate is true then use ShipDate value and ignore the other parameters,
 // otherwise use the values of the other parameters
 IF UseShipDate = 1 THEN
 SET @sSQL = @sSQL + "WHERE ShippedDate > '" + Format(ShipDate, "mm-dd-yyyy")+ "'";

ELSE
 DECLARE @v varchar(100);
 DECLARE @i int;

 SET @v = "ShipVia = " + ShipVia(@i);
 SET @i = @i + 1;
 WHILE @i < 2 // we are assuming that the user can select at most 2 ShipVia-s
 IF ShipVia(@i) <> "" THEN
 SET @v = @v + " OR ShipVia = " + ShipVia(@i);
 END IF
 SET @i = @i + 1;
 END LOOP

 SET @sSQL = @sSQL + "WHERE (" + @v + ") AND ShipCountry LIKE '" + ShipCountry + "'";
END IF
// define the DATASOURCE variable by setting it to the value of @sSQL
SET @MyOrders = @sSQL;

</ELS_RSETTINGS>

Observe that in the code above we have defined the WHERE-clause of the SQL command via the string @sSQL

variable in a conditional manner depending on the values of the parameter options. In particular, for the

construction of the SQL command, we have deviced a loop to consider all the values of the multi-valued ShipVia

parameter. Note that, in this example we have assumed that the user will select a maximum of 2 items from the

multivalued ShipVia list-box. To be able to select more than 2 values, you need to increase the array size, as well

as adjust the condition of the WHILE loop.

Eventually, the values of the parameter options are intended to be passed via the host application, and in this way,

the data source will be controlled from the host application. But in the absence of such a host application, the

Report Designer will prompt the user with the Evaluate Parameters dialog whenever the compiled report

containing parameter options is triggered to generate report output. In the case of the current report example, when

after compilation we trigger the report generation, the Evaluate Parameters dialog prompts with the parameter

options displayed as in Figure 2.29 below:

Figure 2.29Figure 2.29Figure 2.29Figure 2.29.... Showing the Evaluate Parameters dialog for the current sample report

The user may then enter desired values for the parameter options shown in this dialog to check or debug the report

output. Therefore, as we can obviously see that the Evaluate Parameters dialog indeed acts like a handy

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 77

debugging tool to test the generation of a report that contains parameter options.

Query Options
NOTE: In version 3.0 of ELS-Script software, the GEV-engine became obsolete, therefore this section is
currectly unsupported. Moreover, versions of ELS-Script after 3.0 may not support GEV-engine. This
section is retained in this document for backward compatibility purposes only. If you are using version 3.0
or above, please skip this section and jump to section about “Pending Variables”.

There are two versions of the SCRIPT engine. The (G|E|V)-version, which essentially comes with a built-in Report

Generator and Report Viewer, and the (E)-version, which is a much lighter version containing only the core

elements of the report engine. Query options are applicable only when using the (G|E|V)-version of the SCRIPT

engine, and essentially instruct the Report Generator window how to construct a prescribed query form for the

selected report, for example, the various types of controls that may be used, along with respective properties and

events interrelating them in the query form.

Some of the major advantages of utilizing the Report Generator window are as follows:

1. Dispensing the need to develop special query forms in the host application, since such information may be

included in the report file itself.

2. Adding new reports without recompiling the host application, since query form information, as well as,

data source definitions may be imbedded inside the report files.

3. Simplified integration of the host application with the backend report engine.

4. Self-contained and uniform report development platform with a universal programming language, namely

the SCRIPT language.

In fact, the SCRIPT language being very similar to MS-SQL Server procedural language unifies the database

backend, the report scripting, as well as, the front host application's query forms into a single universal

programming platform, while its scripting nature extends its flexibility, relentlessly integrating it into DHTML,

ASP and ASP.NET.

Our discussion of the query options will proceed first with an exposition of the syntax of declaration and

definition, and then the description of the Query Form designer, followed with a sample report illustrating the

general usage of query options.

Query options must be declared only in the ELS_QPARAMS report section, and the general declaration syntax is as

follows:

 QUERY_OPTIONS
 [
 variable_1 controltype_1,
 variable_2 controltype_2,
 ...
 variable_N controltype_N
];

where variable_i are valid variable names of control types controltype_i, respectively for i = 1,2, ... , N. The

possible control types for query options, which cover almost all Windows standard GUI controls, are listed below:

STATIC_CONTROL which defines a static control,

TEXTBOX_CONTROL which defines a textbox control,

 CHECKBOX_CONTROL which defines a checkbox control,

OPTION_CONTROL which defines a radio-button control,

LISTBOX_CONTROL which defines a list-box control with an All Items checkbox,

COMBOBOX_CONTROL which defines a combo-box control,

SPIN_CONTROL which defines a spin control,

 DATE_CONTROL which defines a date control,

 DATERANGE_CONTROL which defines a date range control,

 NUMBERRANGE_CONTROL which defines a number range control,

GRID_CONTROL which defines a grid control,

GROUP which defines a group frame,

Chapter 2

78 Copyright  2003-2004, Epsilon-Logic Systems

SEPARATE BY which defines a specified separator space,

A control variable of one of these control types has inherent properties and events depending on the type of the

control. Some properties and events that are common to all but the last two control types are listed below:

Property or Event Description

VariableName This property retrieves the variable name of a control variable. It is read-only.

Name This property's value becomes the caption name of the control which is displayed as a label text on the

left or top side of the control. If this property is not specified the caption of the control will be the
control's name by default.

Operators This property is used to define a list of operators to be used in a combo-box with the control, by

default this list is empty and no operator combo-box should appear preceding the control. Possible

operators are: =, <, >, <=, >=, <>, LIKE, NOT LIKE, BETWEEN, NOT BETWEEN, IN and NOT IN.

DefaultOperator This applies only if the operator list is non-empty, in which case defines the default operator that will
be displayed in the operator combo-box.

Height This property defines the height of the control in pixels, by default the height of any control will be

the internally defined default height of the control.

Width This property defines the width of the control in pixels, by default the width of any control will be the

internally defined default width of the control.

Alignment This property defines the alignment of the control, by default the control will be left aligned. Possible

alignments are: ELS_LEFT, ELS_CENTER and ELS_RIGHT respectively for left, centered and right
alignments.

LabelStyle This property defines the label or caption text position, possible styles are ELS_LEFT for labels

positioned on the left of the control, and ELS_TOP for labels positioned on the top of the control. By
default labels are put on the left.

Visible This property defines visibility of the control, by default the visibility is true.

Enabled This property makes the control enabled or disabled, by default the control is enabled.

OnChange This event is triggered when the value of the control is changed at run-time, in which case any

SCRIPT code included in this event handler will be executed, controlling the behavior of the contents

of the query form.

OnGotFocus This event is triggered when the control gets in focus at run-time, in which case any SCRIPT code

included in this event handler will be executed, controlling the behavior of the contents of the query
form.

OnLostFocus This event is triggered when the control loses focus at run-time, in which case any SCRIPT code

included in this event handler will be executed, controlling the behavior of the contents of the query

form.

Table 2.12. Common properties and event handlers

Setting or defining property values are allowed only inside the ELS_QPARAMS report section. In contrast, these

values may be called or used inside ELS and FLD tags located anywhere in the entire report script. The event

handlers OnChange, OnGotFocus and OnLostFocus, may be defined only inside ELS-QPARAMS section, and have

the following syntax:

 Event control_name.event_name
 ... SCRIPT statements here ...
 End Event

where control_name is the name of the control, and event_name is the event handler name itself. For example, the

following code snippet illustrates the use of declaration, definition and the event handler:

<ELS_QPARAMS>

QUERY_OPTIONS
[
 UseShipDate CHECKBOX_CONTROL,
 ShipDate DATE_CONTROL
];

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 79

 UseShipDate.Name = "Use ShipDate:";
 ShipDate.Name = "Ship Date:";
 ShipDate.Enabled = FALSE;

 Event UseShipDate.OnChange
 IF UseShipDate.GetValue() = 1 THEN
 ShipDate.Enabled = TRUE;
 ELSE
 ShipDate.Enabled = FALSE;
 END IF
 End Event

</ELS_QPARAMS>

In addition to properties and events, all controls have the following methods:

 GetSQLValue() this function returns an SQL substring based on the ValueID property of the control, which

at run-time can be used in the WHERE-clause of an SQL query,

 GetOperator() this function returns the operator that is selected by the user in the operator combo-box.

We now proceed on listing other properties that are specific to each type of control. First, we note that the

STATIC_CONTROL control has no additional properties, while the controls CHECKBOX_CONTROL, OPTION_CONTROL and

DATE_CONTROL, have the following two additional properties or methods:

Property or

Method

Description

Default This property defines the default value of the control.

ValueID This property defines the name of the row-identifier column, which is used in the string value returned

by the GetSQLValue() function.

GetValue() This function returns the control's user-entered value at run-time.

Table 2.13. Additional properties and methods

We consider next the TEXTBOX_CONTROL, which in addition to the properties, methods and event handlers of tables

2.12 and 2.13, has the Mask property. This property essentially is a string defining the input mask for the textbox

control, for example, the following code snippet will allow entry of only phone numbers masked in (999) 999-9999

form:

QUERY_OPTIONS
[
 PhoneNum TEXTBOX_CONTROL // control variable declaration
];

 PhoneNum.Name = "Phone: "; // the caption of the control
 PhoneNum.Width = 80;
 PhoneNum.Mask = "(###) ###-####"; // input mask (999) 999-9999

For the definition of input mask the following mask specification symbols may be used:

Mask

Symbol

Description

& This input mask will allow an ASCII character, for example "&&&&&" allows the following input values: a_8!*,
8F^w1

A This input mask will allow an alphanumeric character, i.e. a-z, A-Z, 0-9 characters, for example "AAAAAA" allows

the following input values: ab78, 83200F

? This input mask will allow a character from a-z or A-Z ranges, for example "????" allows the following input

values: ab, FJKe

This input mask will allow a digit 0-9, for example "###-####" allows the following input values: 578-9057,

Chapter 2

80 Copyright  2003-2004, Epsilon-Logic Systems

832-00

U This input mask will allow a character from a-z or A-Z ranges, and will force to upper case

L This input mask will allow a character from a-z or A-Z ranges, and will force to lower case

\ This symbol is the escape character which may be used to interpret the following mask symbol as the actual literal

character. For example, "??\###" which allows the following value MI#67

Table 2.14. Mask specification symbols with the corresponding interpretation

Note that by default the value of the Mask property is the empty string, which will allow the input of arbitrary size

strings comprising of ASCII characters.

We consider next the SPIN_CONTROL, which in addition to the properties, methods and event handlers of tables 2.12

and 2.13, has the following two properties:

Property or

Method

Description

LBound This property defines the smallest integer value that can be scrolled via the lower spin arrow

UBound This property defines the largest integer value that can be scrolled via the upper spin arrow

Table 2.15. Properties specific to the SPIN_CONTROL

Along with the common properties, methods and event handlers, the LISTBOX_CONTROL has the following more

specific properties or methods:

Property or

Method

Description

Source This property defines the content of the list-box control. There are two ways to evaluate this property,

setting it either to a VARCHAR array variable or to a DATASOURCE variable.

ValueID This property defines the name of the row-identifier column, which is used in the string value returned

by the GetSQLValue() function. In the case when the Source is defined via a DATASOURCE variable,
this identifier column must be a fieldname included in the field list of the recordset corresponding to

the DATASOURCE variable.

ShowValueID This property defines whether to show or hide the ValueID column in the displayed list. Note that

this applies only when the Source is defined via a DATASOURCE variable.

SelCount This property returns the number of items in the list-box selected by the user at run-time. Note that

this property is read-only.

GetValue(nSel) This function returns the value of the nSel selected item, from the items selected from the list-box by

the user (at run-time). Note that nSel is between 1 and SelCount. We emphasize that when the

Source is defined via a DATASOURCE variable, the returned value corresponds to the row-identifier

column determined by ValueID. Otherwise when the Source is defined via VARCHAR array
variable, the returned value is the value of the item.

AllItems This property defines the state of the All Items check-box that accompanies a LISTBOX_CONTROL.

Table 2.16. Properties specific to the LISTBOX_CONTROL

We illustrate the use of these properties in the following code segment, in which an array variable is used to define

the content of the list-box:

QUERY_OPTIONS
[
 lst LISTBOX_CONTROL // control variable declaration
];

// declare and set an array
DECLARE @SCntry(5) VARCHAR(10);
SET @SCntry(0) = "France";

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 81

SET @SCntry(1) = "Germany";
SET @SCntry(2) = "USA";
SET @SCntry(3) = "Mexico";
SET @SCntry(4) = "Brazil";

 lst.Name = "Ship Country: "; // the caption of the control
 lst.ValueID = "ShipCountry"; // identify user-selected values as ShipCountry field
 lst.Source = @SCntry(5); // set the source of the list-box

We will also illustrate, later in this section, the usage of the LISTBOX_CONTROL, in the case when the Source is

defined by a data source instead of array variable.

The COMBOBOX_CONTROL along with the common properties, methods and event handlers, has the following more

specific properties or methods:

Property or

Method

Description

Source This property defines the content of the list inside the combo-box control. There are two ways to

evaluate this property, setting it either to a VARCHAR array variable or to a DATASOURCE variable.

ValueID This property defines the name of the row-identifier column, which is used in the string value returned

by the GetSQLValue() function. In the case when the Source is defined via a DATASOURCE variable,
this identifier column must be a fieldname included in the field list of the recordset corresponding to

the DATASOURCE variable.

ShowValueID This property defines whether to show or hide the ValueID column in the displayed list. Note that

this applies only when the Source is defined via a DATASOURCE variable.

Default This property defines the default value of the control.

GetValue() This function returns the value of the item selected by the user (at run-time). We emphasize that when

the Source is defined via a DATASOURCE variable, the returned value corresponds to the row-

identifier column determined by ValueID. Otherwise when the Source is defined via VARCHAR
array variable, the returned value is the value of the item.

EditField This property defines the name of the field that has its corresponding selected value displayed in the

edit-box of the combo-box. Note that this property applies only in the case when the Source is

defined via a DATASOURCE variable.

Table 2.17. Properties specific to the COMBOBOX_CONTROL

The following code snippet illustrates the use of the COMBOBOX_CONTROL:

 QUERY_OPTIONS
 [
 combo COMBOBOX_CONTROL
];

 combo.Name = "Orders: ";
 combo.Source = @MyOrders; // where @MyOrders is a datasource of Orders table
 combo.EditField = "ShipName"; // the value of ShipName field will show in the edit-box
 combo.ValueID = "OrderID"; // the key-field is OrderID
 combo.ShowValueID = FALSE; // do not show the key-field in drop-down list

The DATERANGE_CONTROL has the following additional properties and methods along with the common ones

Property or

Method

Description

ValueID This property defines the name of the row-identifier column, which is used in the string value returned

by the GetSQLValue() function.

StartDefault This property defines the default value of the start control of the range.

EndDefault This property defines the default value of the end control of the range.

Chapter 2

82 Copyright  2003-2004, Epsilon-Logic Systems

GetStartValue() This function returns the value of the start control entered by the user (at run-time).

GetEndValue() This function returns the value of the end control entered by the user (at run-time).

Table 2.18. Properties specific to the DATERANGE_CONTROL

The following code snippet illustrates the usage of the DATERANGE_CONTROL:

 QUERY_OPTIONS
 [
 drng DATERANGE_CONTROL
];

 drng.Name = "Sales Period: ";
 drng.StartDefault = DateAdd(MM, -2, GetDate());
 drng.EndDefault = DateAdd(MM, 2, GetDate());

and at some other location in the report script, outside the ELS-QPARAMS section, the start and end values entered

by the user (at run-time) may be called, for example, in the following manner, where [Employee Sales by

Country] is a stored procedure in the NorthWind database of the MS-SQL Server :

 DECLARE @sSP VARCHAR(100);

 SET @sSP = "exec [Employee Sales by Country] '" +
 Format(drng.GetStartValue(), "mm/dd/yyyy") + "', '" +
 Format(drng.GetEndValue(), "mm/dd/yyyy") + "'";

The NUMBERRANGE_CONTROL has the following additional properties and methods along with the common ones

Property or

Method

Description

ValueID This property defines the name of the row-identifier column, which is used in the string value returned
by the GetSQLValue() function.

StartDefault This property defines the default value of the start control of the range.

EndDefault This property defines the default value of the end control of the range.

StartMask This property defines the input mask for the start control of the range.

EndMask This property defines the input mask for the end control of the range.

GetStartValue() This function returns the value of the start control entered by the user (at run-time).

GetEndValue() This function returns the value of the end control entered by the user (at run-time).

Table 2.19. Properties specific to the NUMBERRANGE_CONTROL

The following code snippet illustrates the usage of the NUMBERRANGE_CONTROL:

 QUERY_OPTIONS
 [
 nrng NUMBERRANGE_CONTROL
];

 nrng.Name = "ShipVia Range: ";
 nrng.StartDefault = @nNum;
 nrng.EndDefault = @nNum + 10;
 nrng.StartMask = "###";
 nrng.EndMask = "###";

We consider now the GRID_CONTROL, which has the following additional properties and methods along with the

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 83

common ones:

Property or Method Description

ValueID(nCol) This property defines the name of the row-identifier column corresponding to the specified grid-

column, this identifier column is used in the string value returned by the GetSQLValue()

function. The argument nCol must be between 1 and ColumnCount.

Mask(nCol) This property defines the input mask for the specified grid-column. The argument nCol must be

between 1 and ColumnCount.

ColumnCount This property defines the number of the columns for the grid control.

RowCount This property returns the number of rows for the grid control. Note that this property is read-only

and depends on the number of rows entered by the user at run-time.

GetValue(nRow, nCol) This function returns the value of the grid-cell specified by nRow and nCol.

Table 2.20. Properties specific to the GRID_CONTROL

Finally we have the GROUP and SEPARATE BY controls which are essentially used to group controls or add specific

space between controls. Grouping is defined in the QUERY_OPTIONS via the following generic syntax:

 GROUP group_name
 {
 control_name_1 control_type_1,
 control_name_2 control_type_2,
 ...
 control_name_N control_type_N
 }

The spacer control syntax is as follows:

 SEPARATE BY pixel_height

The following sample code illustrates the usage of both group and spacer controls, as well as, usage of event

handlers and other features:

 QUERY_OPTIONS
 [
 GROUP "Search"
 {
 ByShipDate OPTION_CONTROL,
 ByDateRange OPTION_CONTROL,
 ByShipVia OPTION_CONTROL
 },
 SEPARATE BY 10,
 ShipDate DATE_CONTROL,
 drng DATERANGE_CONTROL,
 shpvrng NUMBERRANGE_CONTROL
];
 ByShipDate.Name = "By Ship Date";
 ByDateRange.Name = "By Date Range";
 ByShipVia.Name = "By Ship Via Range";
 ByShipDate.Default = TRUE;

 drng.Enabled = FALSE;
 drng.Name = "Ship Date Range:";
 ShipDate.Name = "Ship Date:";
 ShipDate.Default = GetDate();
 shpvrng.Name = "Ship Via Range:";
 shpvrng.Enabled = FALSE;
 shpvrng.StartMask = "###";
 shpvrng.EndMask = "###";

 Event ByShipDate.OnChange
 IF ByShipDate.GetValue() = 1 THEN
 ShipDate.Enabled = TRUE;
 drng.Enabled = FALSE;
 shpvrng.Enabled = FALSE;

Chapter 2

84 Copyright  2003-2004, Epsilon-Logic Systems

 ELSE
 ShipDate.Enabled = FALSE;
 END IF
 End Event

 Event ByDateRange.OnChange
 IF ByDateRange.GetValue() = 1 THEN
 drng.Enabled = TRUE;
 ShipDate.Enabled = FALSE;
 shpvrng.Enabled = FALSE;
 ELSE
 drng.Enabled = FALSE;
 END IF
 End Event

 Event ByShipVia.OnChange
 IF ByShipVia.GetValue() = 1 THEN
 drng.Enabled = FALSE;
 ShipDate.Enabled = FALSE;
 shpvrng.Enabled = TRUE;
 ELSE
 shpvrng.Enabled = FALSE;
 END IF
 End Event

Along with the query option controls there are the following list item controls:

 LIST_ITEM.CHECK check-box list-item control corresponding to the CHECKBOX_CONTROL,

LIST_ITEM.OPTION option-button list-item control corresponding to the OPTION_CONTROL,

LIST_ITEM.TEXT textbox list-item control corresponding to the TEXTBOX_CONTROL,

LIST_ITEM.STATIC static list-item control, corresponding to the STATIC_CONTROL,

LIST_ITEM.COMBO combo-box list-item control corresponding to the COMBOBOX_CONTROL,

LIST_ITEM.LIST list-box list-item control corresponding to the LISTBOX_CONTROL,

LIST_ITEM.SPIN spin list-item control corresponding to the SPIN_CONTROL,

LIST_ITEM.DATE date list-item control corresponding to the DATE_CONTROL,

LIST_ITEM.DATERANGE date-range list-item control corresponding to the DATERANGE_CONTROL,

LIST_ITEM.NUMBERRANGE number-range list-item control corresponding to the NUMBERRANGE_CONTROL.

These controls essentially are the same as the corresponding query option controls (on the right side), except that

they are initially hidden and only the names appear in a special list-box. Such a control becomes visible only when

the user selects the name of the control in the special list-box. These types of controls are recommended, specially,

when one wants to use a lot of controls in the Query Form section of the Report Generator window and is

running out of window or screen space.

Along with direct scripting, query forms may be constructed via the Query Form designer sliding window. This

window can be called via the Query Form menu item under the Tools menu, or alternatively via the Query Form

toolbar button of the Project Explorer pane.

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 85

Figure 2.Figure 2.Figure 2.Figure 2.33330000.... Showing the Query Form designer sliding window

The Query Form designer window essentially

consists of the following sections: Toolbar,

Control List and Properties panes (see Figure 2.30

for more details).

The Toolbar contains the following command

buttons:

 Add Control to add a new control,

 Delete Control to delete selected control,

 Move Up to move the selected control

one step up,

 Move Down to move the selected control

one step down.

Note that the Add Control button will call the

Add Control dialog, via which a query option

control may be selected (see Figure 2.31 for more

details).

Figure 2.31Figure 2.31Figure 2.31Figure 2.31.... Showing the Add Control dialog

In the Query Form window, a horizontal splitter control divides the window into two panes. The top pane being

the Control List, is essentially a list in which controls are added, deleted or moved up or down.The bottom pane is

the Properties pane, which displays the properties of the control currently selected in the Control List pane.

Observe that since the query form section in the Report Generator window inherently has a narrow screen space,

the Query Form designer is intentionally designed to arrange controls aligning them into a vertical list.

To set or define the properties of a control in the Control List, one may simply select the control and edit the

desired properties in the Properties pane. Note that some properties are editable directly in the Properties pane,

while others are not and must be manually edited in the Source view, in which case a double-click on the property

name (i.e. left column cell) provides the jump to the location in the script where the property is to be set. We

should emphasize that some properties when defined via expressions in the Source view may no longer be editable

directly in the Properties pane, and therefore the double-click technique may be used to jump to the specific code

location in the script. Also, observe that the value cell (i.e. right column cell) of the event properties OnChange,

OnGotFocus and OnLostFocus have small buttons, which may be used to jump to the code location via a single

mouse-click, as an alternative method to the double-click on the property name.

In the rest of this section we will present a sample report, which illustrates the use of query options with events, as

well as other related issues. First, prepare an empty report with the name REPORT8.ELS. Then create three query

objects in the AUX\Queries container node of the MyNWDB connection. The first query, Categories, must have the

following SQL command:

Chapter 2

86 Copyright  2003-2004, Epsilon-Logic Systems

 SELECT

CategoryName,
CategoryID

 FROM
Categories

The second query, Products, must have the following SQL command:

SELECT
 ProductName,
 ProductID
FROM
 Products
WHERE
 (CategoryID = 1)
ORDER BY
 ProductName

These two queries will be used in the query form section of the Report Generator window, the third query,

ProdOrders, must be used in the report output and must have the following SQL command:

SELECT
 Orders.OrderID,
 Orders.OrderDate,
 Orders.CustomerID,
 Orders.ShipCity,
 [Order Details].Quantity,
 [Order Details].UnitPrice
FROM
 Orders
 INNER JOIN [Order Details] ON
 [Order Details].OrderID = Orders.OrderID
WHERE
 ([Order Details].ProductID = 1)

In this way, we want to develop a report which will generate all the orders that contain a particular product

selected in the query form section of the report.

To setup the query form, use the Query Form designer to add two combo-box controls in the ELS_QPARAMS

report section, namely:

 Category COMBOBOX_CONTROL to contain all the categories from the Categories query,

 Product COMBOBOX_CONTROL to contain all the products belonging to the category selected in

the Category combo-box.

Then drag-drop the Categories query into the script and setup the properties of the two controls so that we will

have the following code inside the ELS_QPARAMS section:

DECLARE @Categories DATASOURCE;

SET @Categories = "SELECT " +
 "CategoryName, " +
 "CategoryID " +
 "FROM " +
 "Categories";

QUERY_OPTIONS
[
 Category COMBOBOX_CONTROL,
 Product COMBOBOX_CONTROL
];

Category.Name = "Product Category: ";
Category.ValueID = "CategoryID"; // ID field is CategoryID
Category.EditField = "CategoryName"; // field displayed in the edit-box of the combobox
Category.ShowValueID = FALSE; // and do not show this ID field
Category.Source = @Categories;

Product.Name = "Product: ";
Product.ValueID = "ProductID"; // ID field is ProductID

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 87

Product.EditField = "ProductName"; // field displayed in the edit-box of the combobox
Product.ShowValueID = FALSE; // and do not shoe this ID field

Note that the identifier field for the source of the Category control is CategoryID field, while the value of the

CategoryName field is displayed in the edit-box of the combo-box. Similarly, for the Product control the identifier

field is ProductID. Also observe that the identifier fields for both controls are hidden in their respective drop-down

lists. Now when the user selects an item from the Category combo-box control, the returned value is the value

corresponding to the CategoryID identifier field. This value will be used to populate the Product combo-box

control with the list of products belonging to the selected category.

Next, we utilize the Query Form designer and select the Category control in the control list, and click on the edit

button of the OnChange event handler. This will insert the corresponding event handler section and jump to the

location in the report script. Now drag-drop the Products query into this event handler section, and set the Source

property of the Product control to the @Products data source variable, so that the following addition code will be

added in the ELS_QPARAMS report section:

Event Category.OnChange
 DECLARE @Products DATASOURCE;
 SET @Products = "SELECT " +
 "ProductID, " +
 "ProductName " +
 "FROM " +
 "Products " +
 "WHERE " +
 "(CategoryID = " + Category.GetValue() + ") " +
 "ORDER BY " +
 "ProductName";
 Product.Source = @Products;
End Event

Note that this event handler will trigger the redefinition of the @Products data source whenever the combo-box

selection is changed. Looking at the SQL command, observe that whenever the value of the Category combo-box

is changed, the GetValue() function will return the CategoryID value, and therefore the @Products data source

will be filtered according to this value.

Continuing the construction of the rest of the report, concentrate on the ELS_RDETAIL report section and add a

pure ELS section by inserting ELS-tags. Then drag-drop the ProdOrders query into this section, and modify the

WHERE-clause so that the ProductID field is set to the value returned by the Product combo-box control. The

result is as follows:

<ELS_RDETAIL FONT-FAMILY="Times New Roman" FONT-SIZE="8pt">
<ELS>
DECLARE @ProdOrders DATASOURCE;
SET @ProdOrders = "SELECT " +
 "Orders.OrderID, " +
 "Orders.OrderDate, " +
 "Orders.CustomerID, " +
 "Orders.ShipCity, " +
 "[Order Details].Quantity, " +
 "[Order Details].UnitPrice " +

"FROM " +
 "Orders " +
 "INNER JOIN [Order Details] ON " +
 "[Order Details].OrderID = Orders.OrderID " +

"WHERE " +
 "([Order Details].ProductID = " + Product.GetValue() + ")";
</ELS>

</ELS_RDETAIL>

Using the Insert ELS-Row window insert two ELS-Rows into the ELS-RDETAIL report section, one for main

ProdOrders records and the other for totals. Then utilizing the Data Fields window make field insertions at

Chapter 2

88 Copyright  2003-2004, Epsilon-Logic Systems

respective columns of the main ELS-Row, so that after some manual modifications the report detail section will

have the following code:

<ELS_RDETAIL FONT-FAMILY="Times New Roman" FONT-SIZE="8pt">
<ELS>
DECLARE @ProdOrders DATASOURCE;
SET @ProdOrders = "SELECT " +
 "Orders.OrderID, " +
 "Orders.OrderDate, " +
 "Orders.CustomerID, " +
 "Orders.ShipCity, " +
 "[Order Details].Quantity, " +
 "[Order Details].UnitPrice " +

"FROM " +
 "Orders " +
 "INNER JOIN [Order Details] ON " +
 "[Order Details].OrderID = Orders.OrderID " +

"WHERE " +
 "([Order Details].ProductID = " + Product.GetValue() + ")";

DECLARE @nCount, @nQty int; // variables used for totals
DECLARE @mTotal money;

</ELS>
// main ProdOrders ELS-Row
<ELS_ROW NAME="ELSRow1">
 <L border="0" CellSpacing="0" CellPadding="0" WIDTH="100%" HEIGHT="15">
 <C HEIGHT="15" WIDTH="9.58%">
 <HDR>OrderID</HDR>
 <FLD>Format(@ProdOrders.Column("OrderID"), "")</FLD>
 </C>
 <C HEIGHT="15" WIDTH="13.75%">
 <HDR>Order Date</HDR>
 <FLD>Format(@ProdOrders.Column("OrderDate"), "mm/dd/yyyy")</FLD>
 </C>
 <C HEIGHT="15" WIDTH="11.67%">
 <HDR>CustomerID</HDR>
 <FLD>@ProdOrders.Column("CustomerID")</FLD>
 </C>
 <C HEIGHT="15" WIDTH="42.08%">
 <HDR>Ship City</HDR>
 <FLD>@ProdOrders.Column("ShipCity")</FLD>
 </C>
 <C ALIGN="right" HEIGHT="15" WIDTH="10.00%">
 <HDR>Quantity</HDR>
 <FLD>Format(@ProdOrders.Column("Quantity"), "###")</FLD>
 </C>
 <C ALIGN="right" HEIGHT="15" WIDTH="12.92%">
 <HDR>UnitPrice</HDR>
 <FLD>Format(@ProdOrders.Column("UnitPrice"), "####.00")</FLD>
 </C>
 </L>
</ELS_ROW>
// ELS-Row used for totals
<ELS_ROW NAME="ELSRow2">
 <L border="0" CellSpacing="0" CellPadding="0" WIDTH="100%" HEIGHT="15">
 <C HEIGHT="15" WIDTH="67.08%">
 <FLD>@nCount</FLD> RECORDS
 </C>
 <C ALIGN="right" HEIGHT="15" WIDTH="10.00%">
 TOTALS:
 </C>
 <C ALIGN="right" BGCOLOR="#F1F1F1" HEIGHT="15" WIDTH="10.00%">
 <FLD>Format(@nQty, "#######")</FLD>
 </C>
 <C ALIGN="right" BGCOLOR="#F1F1F1" HEIGHT="15" STYLE="BORDER-LEFT: #ffffff 3pt solid"
 WIDTH="12.92%">
 <FLD>Format(@mTotal, "########.00")</FLD>
 </C>
 </L>
</ELS_ROW>

<ELS>

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 89

SET @nCount = 0;
SET @nQty = 0;
SET @mTotal = 0.00;

BeginHeader("ELSRow1");
WHILE NOT @ProdOrders.Eof()
 ResultRow("ELSRow1");
 SET @nQty = @nQty + @ProdOrders.Column("Quantity");
 SET @mTotal = @mTotal + @ProdOrders.Column("UnitPrice");
 @ProdOrders.Next();
 SET @nCount = @nCount + 1;
END LOOP
EndHeader("ELSRow1");
// write totals
ResultRow("ELSRow2");
</ELS>
</ELS_RDETAIL>

Note that at the beginning of the ELS_RDETAIL section we have declared variables @nCount, @nQty and @mTotal,

to keep track of respectively the totals of records, quantities and prices. Observe that these variables are initialized

to zero before the iteration process starts over the @ProdOrders data source, and during the iteration these variables

are incremented by the respective values of the data fields. Finally, the row-specification "ELSRow2" is used to

present these totals at the end of all @ProdOrders records.

Pending Variables

In this section we will cover the concept of variable evaluation and output with respect to its logical position in the

report script. More precisely, the problem that we will address has to do with the physical position of the output of

an expression value in the report output, verses the logical position of the evaluation of this expression in the

report script. If the particular variable's value is output after this variable's evaluation, then we call this variable a

running variable, in a sense, because the variable's evaluation runs along the flow of the report generation process.

For example, totals and summaries at the end of a report may be implemented via running variables, which may be

incremented as running totals along the logical flow of the report generation. In contrast, a pending variable is a

variable that has evaluation position after the physical output location of the report script, and therefore the writing

or outputting of the value of the variable must wait until proper evaluation process takes place during the report

generation. Pending variables are necessary, for example, when totals or summaries in a report are presented at the

beginning of the report rather than at the end.

In general, any variable of basic data type may be made into pending variable by simply applying the ValueAt

function. Recall that the ValueAt function has the following syntax:

 VALUEAT(Variable, Event)

Where Variable is any variable of basic data type, and Event is one of the following report engine events:

 ELS_OnBeginPage,

 ELS_OnEndPage,

 ELS_OnBeginReport,

 ELS_OnEndReport.

Note that the Variable argument must be the name of the variable and not an expression. If we want to pass the

value of an expression, then we must first assign the expression to a variable and pass the variable's name as

argument to this function.

To illustrate the usage of pending variables we will outline the sample report REPORT10.ELS, which is a report

that has a summary row at the beginning of the report. Moreover, this summary row contains totals that depend on

the detail records that follow it. In the ELS-QPARAMS section of this new report we define the Prod parameter

option using a data source reference to the Products table of the Northwind database, as shown below:

<ELS_QPARAMS>
 PARAM_OPTIONS
 [

Chapter 2

90 Copyright  2003-2004, Epsilon-Logic Systems

 Prod int
];

 DECLARE @Product DATASOURCE;
 SET @Product = "SELECT " +
 "ProductName, " +
 "ProductID " +
 "FROM " +
 "Products";

 Prod.Prompt = "Product: ";
 Prod.SourceType = 1;
 Prod.ValidValues = (@Product, "ProductName", "ProductID");
 Prod.DefaultValues = (@Product, "ProductName", "ProductID");

</ELS_QPARAMS>

The report data will be defined over the Invoices view object with the corresponding @Orders data source defined

in the ELS_RSETTINGS below:

<ELS_RSETTINGS>
 SET REPORT_TITLE = "Pending Variable Report";
 SET PAGE_ORIENTATION = ELS_PORTRAIT;
 SET PAGE_SIZE = ELS_LETTER;
 SET PAGE_SOURCE = ELS_UPPER;
 SET PAGE_MARGINS.LEFT = 0.5;
 SET PAGE_MARGINS.RIGHT = 0.5;
 SET PAGE_MARGINS.TOP = 0.75;
 SET PAGE_MARGINS.BOTTOM = 0.5;
 SET DEFAULTMODE = ELS_FAST;

 // reports data per selected ProductID sorted by date
 DECLARE @Orders DATASOURCE;
 SET @Orders = "SELECT " +
 "OrderID, " +
 "OrderDate, " +
 "CustomerName, " +
 "ShipCity, " +
 "Quantity, " +
 "UnitPrice, " +
 "ExtendedPrice " +
 "FROM " +
 "Invoices " +
 "WHERE productid = " + Format(Prod.Value, "") +
 " ORDER BY Invoices.OrderDate";

 // get product’s name

DECLARE @sProd varchar(50);
 SET @sProd = @Orders.Column("ProductName");

 // variables used in the summary
 DECLARE @nCount, @nQty int;
 DECLARE @mTotal money;
 DECLARE @sTotalQty, @sTotalSale VARCHAR(20);
</ELS_RSETTINGS>

The variables @sTotalQty and @sTotalSale along with the @nCount variable will be the pending variables for this

report sample. In particular, they are made pending via the ValueAt function applied on the totals in the "ELSRow2"

row-specification, as is shown below in the ELS_RDETAIL section:

<ELS_RDETAIL FONT-FAMILY="Times New Roman" FONT-SIZE="10pt">
<ELS_ROW NAME="ELSRow1">
 <L border="0" CellSpacing="0" CellPadding="0" WIDTH="100%" HEIGHT="15">
 <C WIDTH="10%" HEIGHT="15">
 <HDR>OrderID</HDR>
 <FLD>Format(@Orders.Column("OrderID"), "")</FLD>
 </C>
 <C WIDTH="13%" HEIGHT="15">
 <HDR>Order Date</HDR>

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 91

 <FLD>Format(@Orders.Column("OrderDate"), "mm/dd/yyyy")</FLD>
 </C>
 <C WIDTH="28%" HEIGHT="15">
 <HDR>Customer</HDR>
 <FLD>@Orders.Column("CustomerName")</FLD>
 </C>
 <C WIDTH="27%" HEIGHT="15">
 <HDR>Ship City</HDR>
 <FLD>@Orders.Column("ShipCity")</FLD>
 </C>
 <C ALIGN="right" WIDTH="10%" HEIGHT="15">
 <HDR>Quantity</HDR>
 <FLD>Format(@Orders.Column("Quantity"), "#,##0")</FLD>
 </C>
 <C ALIGN="right" WIDTH="12%" HEIGHT="15">
 <HDR>Subtotal</HDR>
 <FLD>Format(@Orders.Column("ExtendedPrice"), "$#,##0.00")</FLD>
 </C>
 </L>
</ELS_ROW>

// this row is used for pending variables
<ELS_ROW NAME="ELSRow2">
 <L border="0" CellSpacing="0" CellPadding="0" WIDTH="100%" HEIGHT="15">
 <C HEIGHT="15" WIDTH="68%">
 <FLD>ValueAt(@nCount, ELS_OnEndReport)</FLD> records of
 <FLD>@sProd</FLD>
 </C>
 <C HEIGHT="15" ALIGN="right" WIDTH="10.00%">
 TOTALS:
 </C>
 <C HEIGHT="15" ALIGN="right" BGCOLOR="yellow" WIDTH="10%">
 <FLD>ValueAt(@sTotalQty, ELS_OnEndReport)</FLD>
 </C>
 <C HEIGHT="15" ALIGN="right" BGCOLOR="yellow"
 STYLE="BORDER-LEFT: #ffffff 3pt solid" WIDTH="12%">
 <FLD>ValueAt(@sTotalSale, ELS_OnEndReport)</FLD>
 </C>
 </L>
</ELS_ROW>

<ELS>
SET @nCount = 0;
SET @nQty = 0;
SET @mTotal = 0.00;

// write totals at the front
ResultRow("ELSRow2");
</ELS>

<ELS>
// write details next
BeginHeader("ELSRow1");
WHILE NOT @Orders.Eof()
 ResultRow("ELSRow1");
 SET @nQty = @nQty + @Orders.Column("Quantity");
 SET @mTotal = @mTotal + @Orders.Column("ExtendedPrice");
 @Orders.Next();
 SET @nCount = @nCount + 1;
END LOOP
EndHeader("ELSRow1");

// convert totals into string
SET @sTotalQty = Format(@nQty, "#,##0");
SET @sTotalSale = Format(@mTotal, "$#,##0.00");
</ELS>
</ELS_RDETAIL>

According to the application of the ValueAt function, the evaluation of the @nCount, @sTotalQty and @sTotalSale

variables must wait until the end of the report event is fired by the report generation process. Therefore, it is by

virtue of these pending mechanisms that totals of detail records may be put at a position in the output prior to the

detail records themselves, as is depicted in the generation code at the botton of the ELS_RDETAIL section.

Chapter 2

92 Copyright  2003-2004, Epsilon-Logic Systems

This completes the illustration of the usage of pending variables, in future chapters we will give more elaborate use

of pending variables in much more complex grouping and summaries.

Report Settings

In this section we outline a description of the report settings parameters and the corresponding effect on the page

settings of the report output. In general, the report setting must be specified, especially for paginated report output,

and essentially consists of the following parameters:

 REPORT_TITLE This parameter specifies the internal report title, which becomes the HTML

document title, and therefore may be used by HTML agents. When used in a report

that is furnished with a query form, this title string is displayed as the description of

the report in the Report Generator window.

 PAGEMARGIN This parameter specifies the page margins of the output pages in decimal inches,

and has the following four properties:

 TOP which controls the top margin of the page,

 BOTTOM which controls the bottom margin of the page,

 LEFT which controls the left margin of the page,

 RIGHT which controls the right margin of the page.

 PAGE_SIZE This parameter specifies a standard printer page size, by default it is Letter size.

 PAGE_SOURCE This parameter specifies a standard printer source, by default it is Upper tray.

 PAGE_ORIENTATION This parameter specifies a standard page orientation, possible page orientation

values are ELS_PORTRAIT (default) and ELS_LANDSCAPE.

 DEFAULTMODE This parameter specifies the report generation mode. There are three report

generation modes, namely: ELS_FAST (default), ELS_CONTINUOUS and ELS_STYLE.

 SUPPRESS_PHEADER This parameter specifies whether to include or exclude the page header section of

the report for the first and last pages, and has the following properties:

 FIRSTPAGE which controls the inclusion/exclusion in the first page,

 LASTPAGE which controls the inclusion/exclusion in the last page.

 SUPPRESS_PFOOTER This parameter specifies whether to include or exclude the page footer section of

the report for the first and last pages, and has the following properties:

 FIRSTPAGE which controls the inclusion/exclusion in the first page,

 LASTPAGE which controls the inclusion/exclusion in the last page.

In the current version of the SCRIPT report engine, the ELS_STYLE generation mode is not very useful and is not

recommended in the case of long reports. In contrast therefore, there are two useful modes of generating reports,

namely, a paginated report output or a continuous report output. The ELS_FAST mode will generate reports in a

paginated and extremely fast manner, whereas, the ELS_CONTINUOUS mode will generate reports in a continuous

manner, which perhaps is more suitable to web-based reporting.

Finally, the user may set the report settings either directly entering information into the ELS_RSETTINGS report

section, in which case IntelliSence makes life extremely easy by providing indispensable selection lists. Or the user

may call the Report Settings dialog via the Report Settings menu item under the File menu. For further details

about the Report Settings dialog see Figure 2.32.

Also, it is important to notice that the List Report Settings menu command in the popup menu triggered inside the

Source view will popup an actual list of all the report settings primitives.

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 93

Figure 2.32Figure 2.32Figure 2.32Figure 2.32.... Showing the Report Settings dialog

XML Object
The XML object support was introduced directly into the SCRIPT language in version 3.0 of ELS-Script

®
. In

particular, it implements all elements of MSXML 4.0 including full support for the Document Object Model

(DOM), the XML Schema Definition language (XSD), the Schema Object Model (SOM), the Extensible Stylesheet

Language Transformation (XSLT), XML Path language (XPath), and the Simple API for XML (SAX).

The following list outlines a brief description of all the XML object types that can be declared and defined directly

in the SCRIPT language:

Object Description

XMLDOM This object represents the top level of the XML source, includes members for
retrieving and creating all other XML objects

XMLDOMAttribute This object represents an attribute of the XMLDOMElement object

XMLDOMCDATASection This object is used to quote or escape blocks of text to keep from being interpreted as

markup language

XMLDOMCharacterData This object provides text manipulation methods that are used be several objects

XMLDOMComment This object represents the content of an XML comment

XMLDOMDocumentFragment This object is used for tree insert operations

XMLDOMDocumentType This object contains information associated with the document type declaration

XMLDOMElement This object represents the element object

XMLDOMEntity This object represents a parsed or unparsed entity in the XML document

XMLDOMEntityReference This object represents an entity reference node

XMLDOMNamedNodeMap This object adds support for namespaces and iteration through the collection of

attribute nodes

XMLDOMNode This object represents the XML node and supports data types, namespaces, document

type definition (DTD), and schemas

XMLDOMNodeList This object represents the collection of nodes with indexed access

XMLDOMNotation This object contains a notation declared in the document type definition (DTD) or

schema

XMLDOMParseError This object returns information about the last parse error, including the error number,

Chapter 2

94 Copyright  2003-2004, Epsilon-Logic Systems

line number, character position and description of error

XMLDOMProcessingInstruction This object represents a processor-specific instruction,

XMLDOMSchemaCollection This object represents the schema or namespace collection

XMLDOMSelection This object represents the list of nodes that match a given XML Path language (XPath)

expression

XMLDOMText This object represents the text content of an element or attribute

 Table 2.21. A brief aoutline of the XML objects types supported in SCRIPT language

For further syntax details about the member properties and methods of these XML objects, please be informed that

the Source view comes with full IntelliSense support, making the XML utilization an extremely intuitive

development task. Further details may also be found in the online help that accompanies the software.

For the rest of this section we illustrate via a simple report, the usage of the XMLDOM, XMLDOMNode and XMLDOMNode

XML objects, along with their indispensable selectNodes, selectSingleNode, item, firstChild and nodeValue

member properties and methods. To proceed, create an empty report script with the name Report11.ELS. This

report will be based on the Orders.XML, an XML document located in the \Samples\Data subfolder of the ELS-

Script
®
 software’s main folder. In this report, we first add the OrderID report parameter option via direct entry into

the Source view or with the help of the Parameter List window’s more visual approach. Then, in the report

settings section we define the XML source document utilizing the load member function:

 DECLARE @oXML XMLDOM;
 @oXML.load("C:\ELSS\Samples\Data\Orders.xml");

In this same section, we declare XMLDOMNodeList and XMLDOMNode objects to handle the XML dataset and the

corresponding field level nodes. Then we define the dataset via the XPath pattern “dataroot/Orders” and query

condition depending on the OrderID parameter option, as shown in the code segment below:

 DECLARE @i INT;
 DECLARE @oRecords XMLDOMNodeList;
 DECLARE @oRec XMLDOMNode;
 DECLARE @oFld(5) XMLDOMNode;

 SET @oRecords = @oXML.selectNodes("dataroot/Orders[(OrderID >= "

+ Format(OrderID, "") + ")]");

Note that the @oRecords contains the collection of all nodes that have “Orders” as tag name. Therefore, we need to

iterate over this collection and consider the field child nodes of each item. This is depicted in the code segment

below:

 WHILE @i < @oRecords.length
 SET @oRec = @oRecords.item(@i);

 SET @oFld(0) = @oRec.selectSingleNode("OrderID");
 SET @oFld(1) = @oRec.selectSingleNode("OrderDate");
 SET @oFld(2) = @oRec.selectSingleNode("ShipVia");
 SET @oFld(3) = @oRec.selectSingleNode("ShipName");
 SET @oFld(4) = @oRec.selectSingleNode("ShipCity");

 ResultRow("ELSRow1");

 SET @i = @i + 1;
 END LOOP

Note that in particular, we are selecting via the selectSingleNode function the desired field node into the

respective @oFld(j) XMLDOMNode object, while in the “ELSRow1” row-specification we will use the nodeValue of

the firstChild of each @oFld(j) node to get the corresponding desired value for the field, as shown in the code

segment below:

<ELS_ROW NAME="ELSRow1">
 ... column header line here ...
 <L border="0" CellSpacing="0" CellPadding="0" HEIGHT="15" WIDTH="100%">
 <C HEIGHT="15" WIDTH="10%">

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 95

 <FLD>
 COALESCE(@oFld(0).firstChild.nodeValue, "")
 </FLD>
 </C>
 <C ALIGN="center" HEIGHT="15" WIDTH="20%">
 <FLD>
 COALESCE(@oFld(1).firstChild.nodeValue, "")
 </FLD>
 </C>
 <C ALIGN="center" HEIGHT="15" WIDTH="10%">
 <FLD>
 COALESCE(@oFld(2).firstChild.nodeValue, "")
 </FLD>
 </C>
 <C HEIGHT="15" WIDTH="30%">
 <FLD>
 COALESCE(@oFld(3).firstChild.nodeValue, "")
 </FLD>
 </C>
 <C HEIGHT="15" WIDTH="30%">
 <FLD>
 COALESCE(@oFld(4).firstChild.nodeValue, "")
 </FLD>
 </C>
 </L>
</ELS_ROW>

Observe that we have used COALESCE function to handle the possibility when the named tag node may be missing

for some Orders records. For example, it is possible that some values of some fields are NULL for some records, in

which case, by XML conventions the whole XML tag will be omitted from the XML document. In such situations,

the COALESCE function will simply insert the empty string value for the FLD-element instead of generating a run-

time error.

Observe also that the @oFld(1) node contains the OrderDate date-time field value, but in the XML document

(assuming that we have no accompanying XSD schema definition file), this information is presented in character

data type. In SCRIPT language one may convert the character data to date-time and use the Format function to

present the date value in a proper manner. This conversion may be achieved via the ToDATE function as depicted

in the code segment below:

Format(ToDATE(COALESCE(@oFld(1).firstChild.nodeValue, ""), "yyyy-mm-ddThh:nn:ss"),

 "mm-dd-yyyy")

Note that the ToDATE date-time specification “yyyy-mm-ddThh:nn:ss” was used based on the values of the

OrderDate field node in the XML document. It may be interesting to note that such information may be derived

programmatically from an accompanying XSD schema definition file, provided such a file indeed exists.

We close this section by listing the complete SCRIPT code for the Report11.ELS:

<ELS_QPARAMS>
 PARAM_OPTIONS
 [
 OrderID int
];
</ELS_QPARAMS>

<HTML>
<HEAD>
</HEAD>
<BODY>
<ELS_RSETTINGS>
 SET REPORT_TITLE = "Simple XML Report";
 SET PAGE_ORIENTATION = ELS_PORTRAIT;
 SET PAGE_SIZE = ELS_LETTER;
 SET PAGE_SOURCE = ELS_UPPER;
 SET PAGE_MARGINS.LEFT = 0.5;
 SET PAGE_MARGINS.RIGHT = 0.5;
 SET PAGE_MARGINS.TOP = 0.75;
 SET PAGE_MARGINS.BOTTOM = 0.5;
 SET DEFAULTMODE = ELS_FAST;

Chapter 2

96 Copyright  2003-2004, Epsilon-Logic Systems

 // define the XML document
 DECLARE @oXML XMLDOM;
 @oXML.load("C:\ELSS\Samples\Data\Orders.xml");

 // define the XML dataset
 DECLARE @i INT;
 DECLARE @oRecords XMLDOMNodeList;
 DECLARE @oRec XMLDOMNode;
 DECLARE @oFld(5) XMLDOMNode;

 SET @oRecords = @oXML.selectNodes("dataroot/Orders[(OrderID >= "
 + Format(OrderID,"") + ")]");

</ELS_RSETTINGS>

<ELS_RHEADER FONT-FAMILY="Times New Roman" FONT-SIZE="10pt">
<DIV align="center" height="60">

Simple XML Report

</DIV>
</ELS_RHEADER>

<ELS_PHEADER HEIGHT="30px" FONT-FAMILY="Arial" FONT-SIZE="8pt">
<TABLE style="FONT-SIZE: 8pt; WIDTH: 100%; HEIGHT: 20px">
<TBODY>
 <TR style="HEIGHT: 16px" vAlign="top">
 <TD style="FONT-WEIGHT: bold; WIDTH: 541px">
 <SPAN class="Field" style="OVERFLOW: hidden; WIDTH: 408px; COLOR: gray;
 WHITE-SPACE: nowrap; HEIGHT: 14px">
 <FLD>"Simple XML Report"</FLD>
 </TD>
 <TD style="WIDTH: 173px; TEXT-ALIGN: right">
 <SPAN class="Field" style="OVERFLOW: hidden; WIDTH: 141px; COLOR: gray;
 WHITE-SPACE: nowrap">
 <FLD>"P " + Format(PageNum(),"") + " / " + Format(PageCount(),"")</FLD>
 </TD>
 </TR>
</TBODY>
</TABLE>
</ELS_PHEADER>

<ELS_PFOOTER HEIGHT="30px" FONT-FAMILY="Arial" FONT-SIZE="8pt">
<TABLE style="FONT-SIZE: 8pt; WIDTH: 100%; HEIGHT: 20px">
<TBODY >
 <TR style="HEIGHT: 16px" vAlign="top">
 <TD style="FONT-WEIGHT: bold; WIDTH: 541px">
 <SPAN class="Field" style="OVERFLOW: hidden; WIDTH: 408px; COLOR: gray;
 WHITE-SPACE: nowrap; HEIGHT: 14px">
 <FLD>"RUN DATE-TIME: " + Format(GetDate(),"mm/dd/yy")
 + "(" + Format(GetDate(),"hh:nn:ss") + ")"</FLD>

 </TD>
 <TD style="WIDTH: 173px; TEXT-ALIGN: right">
 <SPAN class="Field" style="OVERFLOW: hidden; WIDTH: 141px; COLOR: gray;
 WHITE-SPACE: nowrap">
 <FLD>" "</FLD>

 </TD>
 </TR>
</TBODY>
</TABLE>
</ELS_PFOOTER>

<ELS_RDETAIL FONT-FAMILY="Times New Roman" FONT-SIZE="8pt">
<ELS_ROW NAME="ELSRow1">
 <L border="0" CellSpacing="0" CellPadding="0" WIDTH="100%" HEIGHT="15">
 <C HEIGHT="15" WIDTH="10%">
 <HDR>
 OrderID
 </HDR>
 </C>
 <C ALIGN="center" HEIGHT="15" WIDTH="20%">
 <HDR>

The SCRIPT Language

Copyright  2003-2004, Epsilon-Logic Systems 97

 Order Date
 </HDR>
 </C>
 <C ALIGN="center" HEIGHT="15" WIDTH="10%">
 <HDR>
 ShipVia
 </HDR>
 </C>
 <C HEIGHT="15" WIDTH="30%">
 <HDR>
 Ship Name
 </HDR>
 </C>
 <C HEIGHT="15" WIDTH="30%">
 <HDR>
 Ship City
 </HDR>
 </C>
 </L>
 <L border="0" CellSpacing="0" CellPadding="0" HEIGHT="15" WIDTH="100%">
 <C HEIGHT="15" WIDTH="10%">
 <FLD>
 COALESCE(@oFld(0).firstChild.nodeValue, "")
 </FLD>
 </C>
 <C ALIGN="center" HEIGHT="15" WIDTH="20%">
 <FLD>
 Format(ToDATE(COALESCE(@oFld(1).firstChild.nodeValue, ""),
 "yyyy-mm-ddThh:nn:ss"),"mm-dd-yyyy")
 </FLD>
 </C>
 <C ALIGN="center" HEIGHT="15" WIDTH="10%">
 <FLD>
 COALESCE(@oFld(2).firstChild.nodeValue, "")
 </FLD>
 </C>
 <C HEIGHT="15" WIDTH="30%">
 <FLD>
 COALESCE(@oFld(3).firstChild.nodeValue, "")
 </FLD>
 </C>
 <C HEIGHT="15" WIDTH="30%">
 <FLD>
 COALESCE(@oFld(4).firstChild.nodeValue, "")
 </FLD>
 </C>
 </L>
</ELS_ROW>

<ELS>
 BeginHeader("ELSRow1");
 WHILE @i < @oRecords.length
 SET @oRec = @oRecords.item(@i);

 SET @oFld(0) = @oRec.selectSingleNode("OrderID");
 SET @oFld(1) = @oRec.selectSingleNode("OrderDate");
 SET @oFld(2) = @oRec.selectSingleNode("ShipVia");
 SET @oFld(3) = @oRec.selectSingleNode("ShipName");
 SET @oFld(4) = @oRec.selectSingleNode("ShipCity");

 ResultRow("ELSRow1");

 SET @i = @i + 1;
 END LOOP
 EndHeader("ELSRow1");
</ELS>
</ELS_RDETAIL>

</BODY>
</HTML>

