

Copyright © 2003, 2004 by Epsilon-Logic Systems

3

SCRIPT Engine

In the previous chapters we described in glorious details all the GUI tools that are contained in ELS-Script
®

package. In particular, we have seen that the Report Designer application is a profound tool for the creation and

development of report scripts, and comes with a SCRIPT compiler and a design-time SCRIPT engine for

debugging report scripts during their development. ELS-Script
®
 package also contains two versions of the SCRIPT

report engine, namely, the GEV-engine and the E-engine, both of which are currently available as COM

components. The ELS-Script
®
 package may optionally include a .NET compatible version of the E-engine, with

built-in ADO.NET access, XML SCRIPT object, as well as other .NET technologies.

In this chapter, we will first outline the two versions of the SCRIPT engine, followed by an exposition of the

architecture of the SCRIPT framework. Then we will describe all the API functions and members that are exposed

in both engines, followed by illustrations of their usage via detailed sample host applications and report scripts.

In brief, we will discuss the following issues:

� Architecture of the SCRIPT framework

� SCRIPT engine types and usage configurations

� Utilizing the GEV-engine with the Report Generator and Report Viewer windows

� Integrating SCRIPT engine capabilities entirely in a server-based ASP application

� Outlining all the API functions, properties and events of SCRIPT engines

� Illustrating the API usage with detailed sample applications and report scripts

Architecture of SCRIPT Framework
The SCRIPT framework consists of several modules corresponding to various stages in the cycle of report creation

and integration. In particular, these stages may involve the creation and design of report scripts, the diagnosis and

compilation of these report scripts into binary report files, the integration of the run-time SCRIPT engine with host

application, and the generation of report output at run-time.

Refining these stages a little further, the framework may be organized into the following parts:

� Data access and retrieval definition tools,

� DHTML design and edit tools,

� Data row tabulation, group and summary definition tools,

� Data field and expression insertion and format definition tools,

� Query form design and parameter option definition tools,

Chapter 3

2 Copyright © 2003, 2004 by Epsilon-Logic Systems

� SCRIPT edit and manipulation tools,

� Report script compilation and diagnostic tools,

� Binary report builder and optionally report catalog tool,

� SCRIPT engines,

� Configuration and integration of the SCRIPT engine via API functions, properties and events.

Report Design and Compilation

The report creation and design, essentially begins with the user selecting a standard template from the library of

Standard Report Templates, which creates a draft template ELS-file containing script, copied from the selected

standard template. Recall that an ELS-file is a report script file composed of DHTML, ASP, Java or VB Script

segments intertwined with SCRIPT language code. Once such an initial template is created, the user may utilize

various tools available in the Report Designer application to edit and design the report script.

The connection manager is used to define data access to the data sources, while the query and data shape builders

are used to define SQL or Shape commands to be inserted into the report script. Similarly, XML data may be

retrieved via XML objects. Once data sources and XML objects are added to the report script, the data fields or

XML fields may be inserted via the Data Fields tool. Moreover, expressions derived from these data fields and

SCRIPT functions may also be inserted utilizing the Expression Builder.

Figure 3.1.Figure 3.1.Figure 3.1.Figure 3.1. Showing the architecture of the report design and build processes

Along with data definition, data presentation processes are also involved in design of a report. In particular, given

that ELS-Script is based on Open Document Structure technology with DHTML being the current target document

format, the document typeset language becomes DHTML, including Java, VB and ASP scripting. Note that, given

the fact that the SCRIPT language integrates relentlessly with ASP.NET, this inherent ODS technology permits the

natural extension of ELS-Script to .NET platform.

Unlike other report tools in the current market, ELS-Script is designed around the concept of Open Document

Structure, which briefly speaking exposes the internal report template format, making report development platform

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 3

very similar to scripting languages used in HTML documents. The ODS technology behind ELS-Script is in no

way restricted to HTML or DHTML formats, and may be extended to any tag-oriented document format based on

markup languages, such as XML, MathML, VML or SVG, to name a few.

HTML edit operations may be performed via the Design view of the Report Designer application, which is a

multiple-pane sophisticated HTML editor comprising of operations to manipulate such features as text font, color,

background color, border color and size, HTML table, other HTML elements along with attributes and styles, text

alignment, image, paragraph style and indentation, as well as, other HTML features.

To define data tabulation, ELS-Row and ELS-Line operations may be used via the Insert ELS-Row, Insert ELS-

Shape and Insert ELS-Line windows. Such tabulation constructs are more efficient than regular HTML Tables,

and just like HTML Tables, they may be resized or manipulated via the Design or Source view after they are

inserted into the report script. Using Data Fields and Expression Builder windows, the user may then insert data

fields or expression about data fields into the cells of these tabulation constructs.

The Query Form designer aids the user in defining query form controls provided the Report Generator window

is selected to be called by the host application. Otherwise communication from the host application to the report

engine is assumed via the parameters defined in the Parameter List window of a report script.

Supplementing all these tools, almost about anything may be accomplished directly via the edit operations in the

SCRIPT Editor window or the Source view.

Figure 3.2.Figure 3.2.Figure 3.2.Figure 3.2. Showing an example of report project Build process

Report Build process parses and compiles all the report script ELS-files into corresponding binary REP-files.

Moreover, it retrieves all the REPORT_TITLE values from the report settings section of the report scripts and

creates an index IDX-file. In this way at run-time the report engine needs not re-parse the report script, but rather

use the compiled object form contained in the corresponding binary REP-file. Observe that the format of the IDX-

file is simply a comma delimited text file format, and comprises of two columns, the filename of the REP-file and

the REPORT_TITLE of the report, see the example illustrated in Figure 3.2. The IDX-file is essentially used in the

Report Generator window to define the content of the report list-box, in this way resembling a catalogue of

reports in a project.

The Build process assumes that all report scripts for a project are located in the REPORT subfolder of the project

folder, and when the process is run, the corresponding binary REP-files will be put into the BIN subfolder of the

project folder along with the IDX-file. All images or related include files will be duplicated inside the BIN

subfolder, as illustrated in Figure 3.3 below. Note that if the BIN subfolder does not yet exist in a project folder,

the Build process will create the subfolder along with the IMAGE and INCLUDE subfolders of the BIN subfolder.

The major advantage of such file management configuration is to simplify the deployment of the resulting REP-

files integrating them with the host application. Apparently, what the developer needs to do is simply copy the

whole content of the BIN subfolder to the selected target location of the host application. And therefore, unlike

other web design applications, the Report Designer does not inherit any tedious file dependency problems.

To summarize this section, we list several other tools which are also important in the creation and design of

reports. The Format/Conversion Wizard window is an indispensable tool for formatting variable values into

Chapter 3

4 Copyright © 2003, 2004 by Epsilon-Logic Systems

string expressions, as well as converting string values to date-time and numeric expressions. The Connection/

Datasource List window may be used to display all connection and data source objects in the current report script

and navigate by a click to the location of the object's definition in the script to edit. The Special Symbols window

contains a list of commonly used symbol characters. The Insert Table and Insert Image dialogs may be used

respectively to insert HTML Tables and images in the report script. The SQL Dictionary contains detailed

information about SQL elements along with proper syntax for almost all kinds of backend database types including

MS-Access, MS-SQL Server, DB2, Sybase, FoxPro and MySQL. The Find In Files is a profound text search tool

spanning over multiple files under specified path. Finally, the IntelliSense in the Source view's editor, as well as

the Expression Builder's editor greatly simplify the task of SCRIPT coding.

Figure 3.3.Figure 3.3.Figure 3.3.Figure 3.3. Showing the relative location of the REP-files with respect to project path

Report Generation

The report engine is optimized for both speed and memory consumption. Therefore, in order not to exhaust

valuable system memory resources, the report output is generated into a simple indexed database, with each record

being a page of the output. These database files have extension STG and essentially are temporary storage files

that are deleted whenever a new generation is initiated for the same instance of the report engine, or whenever the

engine instance is destroyed. Moreover, each generation instance will create a separate and unique STG-file. This

later feature makes the report engine suitable for centralized multi-user environment, especially when deployed as

a server-based web application or web service.

The SCRIPT report engines come with two modes of report generation,

� ELS_FAST mode, which essentially is the paged mode that we just described

� ELS_CONTINUOUS mode, which is the continuous mode

In the continuous generation mode, the report output is generated as a single continuous HTML or DHTML

document, strictly preserving the format of all the HTML elements as they were in the source document. Because

of this nature, unlike the paged generation mode, the report output in the continuous mode case is generated into a

HTML file with the standard HTM file extension. Moreover, each such output HTM-file will have a unique

filename depending on the generation instance, as well as, the report engine instance. Therefore, some advantages

of the continuous generation mode are:

� Full compliance and preserving of the HTML or DHTML elements in HTML document, especially the

width of HTML Tables, as well as, the DIV and SPAN sections

� Output suitability for web reporting as a single continuous web page

� Suitability for mail or document merge

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 5

In contrast, some of the advantages of paged mode are as follows:

� Suitability for printer based paged format

� Splitting of large report output into small page sizes suitable for Internet based low-bandwidth

communication environment

� Minimize consumption of valuable system memory resources

� Maximize report generation speed

� Preserving the ODS structure to the extend of almost full compliance

The ELS_FAST paged generation mode may be deployed in a very effective way in a server-based ASP

application. Essentially, one may define a web page where the generation is triggered, and the report output pages

may be viewed in another web page consisting of two HTML frames, the upper frame may serve as a toolbar with

navigation buttons, while the bottom frame will display the pages of the report output. Now when the user clicks

on the next page button, a request is send from the client-browser to the ASP application, which asks for the next

output page via the GetPageContent(nPage) API function of the report engine. This will get the content of nPage

page of the output, which may be wrapped in the Response object and sent back to the client browser, displaying it

in the lower HTML frame. The diagram in Figure 3.4 illustrates these mechanisms.

Figure 3.4.Figure 3.4.Figure 3.4.Figure 3.4. Showing page retrieval mechanism in a server-based deployment

Note that, since the report output pages are HTML documents, the client-browser will not need any plug-in or

COM component, and therefore this deployment of SCRIPT engine is truly a zero-client-install web reporting

solution.

Utilizing SCRIPT Engine
In this section we will describe various ways that one can utilize the SCRIPT engines. Recall that there are two

types of SCRIPT engines, namely the GEV-engine and the E-engine. In addition to all the features of E-engine, the

GEV-engine contains built-in Report Generator and Report Viewer windows, included in the component with

the intension to simplify the task of integration of the report engine with the host application.

There are three ways to integrate the GEV-engine with a host application depending on end-user requirements, the

application platform and the deployment environment.

Chapter 3

6 Copyright © 2003, 2004 by Epsilon-Logic Systems

(a) Utilizing the Report Viewer via the Report Generator window
(b) Utilizing the Report Viewer without calling the Report Generator
(c) Utilizing another target browser to view reports

The main goal of a developer using method (a) would be to minimize the implementation efforts needed in the

integration of the report engine with the host application. In this case, all one has to do is to set some properties of

Report Viewer and Report Generator windows via the SCRIPT engine APIs, and then call the Report

Generator window. All other report generation tasks will be handled via the Report Generator with no extra

effort.

Recall that the Report Generator window consists of the report list grid and the query form section. This query

form section of the Report Generator window will display the controls defined in the ELS-QPARAMS section of

the report that is selected in the report list grid. Therefore, it is not difficult to see that by including query

parameter controls in the ELS_QPARAMS section of a report, the data selection information of a report is

ingeniously put in the backend instead of the front-end. In traditional report tools, often you need to define data

selection information in the host application, so that for each report type you will need to perform some

implementation in the host. A drawback of this is that whenever some structural changes are needed in the report

template, the host application will need a recompilation. None of the report tools that exist on the market have an

option to include data selection control in the report template itself. In this sense, ELS-Script is very unique to

allow such a configuration, so that new report templates may still be added to a host system long after the last

compile and deployment of the host application.

To summarize, we note that the main advantages of method (a) are as follows:

� Simplifies the integration of report engine with host application.

� Makes report parameters independent from the host application by putting the data selection controls

inside the report template itself.

� Saves the developer a fair amount of report specific coding in the host application.

Figure 3.5.Figure 3.5.Figure 3.5.Figure 3.5. Showing the two versions of SCRIPT engine, the E-engine and the GEV-engine with Report Generator and Report Viewer windows

We next move on to the alternative method described in (b). In this case, the Report Viewer window is used

without utilizing the Report Generator. This method may be necessary especially when it is required to develop a

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 7

non-standard data selection interface in the host application, from where the report generation is triggered. Observe

that the existence or the possibility of method (c) in the integration of the report engine, in which case any target

browser component may be used as a report output viewer. For example, one may use any HTML viewer

component in the host application and target all report output into this viewer. Nevertheless, for most windows

applications method (b) is recommended, since the developer will avoid a fair amount of coding in the host

application by simply retaining the Report Viewer window. We should also emphasize that the Report Viewer is

equipped with sophisticated built-in features, which makes it worth to be seriously considered whenever possible.

The Report Viewer window essentially consists of a view area and two toolbars at the bottom of the window. The

view area is essentially a HTML viewer and is used to display the pages of the report output, while the two

toolbars consist of the following buttons:

 Save As this will save the entire report output as HTML document to a specified location,

 Print this will call the printer dialog, so that the user may print the report output,

 Print Preview this will display the page in print preview window,

 Copy this will copy the selection to the clipboard,

 Select All this will select the content of the page,

 High-light this will high-light the selection,

 Color Selector this will display the high-light color dialog,

 Find this will call the Find window for text search over the entire report output,

for the left side toolbar, and

 Stop this will stop any pending report generation process,

 First Page this will display the first page of the report output in the viewer,

 Previous Page this will display the previous page of the report output in the viewer,

 Next Page this will display the next page of the report output in the viewer,

 Last Page this will display the last page of the report output in the viewer,

for the right side toolbar. In between these two toolbars, the Report Viewer displays the report generation status

information or the current page number information.

One of the major advantages of the ODS compliance of ELS-Script is the fact that the report output pages are

essentially HTML documents, and therefore may be viewed by any web browser. This fact by itself makes the

method in (c) very possible. This also proves that ELS-Script software system is the best and most natural solution

to web reporting.

Finally, we note that in method (c) we have utilized neither the Report Generator nor the Report Viewer, and

therefore in such a case it is more suitable to use the E-engine rather than the GEV-engine. This is because the E-

engine contains only the report engine with no GUI elements exposed, and for that matter is much smaller in size

compared to the GEV-engine.

APIs of SCRIPT Engine

The SCRIPT engines are interfaced via a collection of API functions and objects. Since there are two types of

SCRIPT engine, namely E-engine and GEV-engine, we describe first all the APIs that are common to both types of

SCRIPT engines, and later on we continue this description with the rest of the APIs specialized to the GEV-engine

types.

The main API object, common to both types of engines, is the ELSReportEngine class, which essentially handles

all engine operations such as data access connection, report generation and storage. We outline next the properties,

methods and events of ELSReportEngine class:

 Connection Property of type Unknown, this property defines the default connection for

the report engine, note that the default connection will be used for the

report generation if no further specifications occur in the ELS-file.

 Compression Property of type Integer, this property defines the HTTP 1.1 compression

level to be used in the report engine. It can assume one of the following

enumerated values:

Chapter 3

8 Copyright © 2003, 2004 by Epsilon-Logic Systems

 ELS_NOCOMPRESSION = 0,
 ELS_ONLYMPCOMPRESSION = 1,
 ELS_FULLCOMPRESSION = 2,

 By default the compression is set to ELS_NOCOMPRESSION.

TargetBrowser Property of type Unknown, this property defines the target browser in

which the report output will be generated.

SetBaseURLPath(strURLPath) Subroutine, this function sets an explicit URL used to resolve links and

references to external sources, such as images or hyperlinks used in the

report. This URL path is necessary especially when deploying the engine in

a server-based web application.

SetStoragePath(sPath) Subroutine, this function sets the storage directory used for temporary files

created during report generation. By default, if this path is not defined the

TEMP subdirectory of the executable directory will be the storage

directory.

Initialize(bLogIsOn) Function with return type Long, this function initializes the report engine.

The optional Boolean argument bLogIsOn specifies whether a report

generation log file is created per report type or not. By default bLogIsOn is

FALSE, so that if not specified then no log file will be created during

generation of reports.

UnInitialize() Subroutine, this function un-initializes the report engine.

GenerateReport(objRep, CmdShow)

Function with return type Long, this function triggers the report

generation process for the report specified by the ELSReport object objRep.

The argument objRep is of type Unknown, the CmdShow is an optional

ECmdShow type argument with default ELS_SHOW. Note that variables of

ECmdShow type have two possible values, ELS_SHOW to show the report

output, and ELS_HIDE to hide the report output generating it in the internal

storage. In this later case, the content of the output may be retrieved via the

GetPageContent, GetOutput, SendOutputHTTP and SaveOutput functions.

This function, if successful will return a positive long value representing

the actual number of generated pages. Otherwise, it will return 0 or a

negative error value if unsuccessful.

Stop() Subroutine, this function will stop an active report generation process.

GetPageContent(nPage) Function with return type String, this function will return the content of

the report output page specified by the nPage argument. In particular, it

assumes that the report is already generated and the storage active. Note

that the argument nPage is a variable of type Long.

GetPageSetupInfo(dLeftMargin, dRightMargin, dTopMargin, dBottomMargin,

dPageSource, dPaperSize, dOrientation, dDefFontSize)

Function with return type Long, this function is used to get margin, page

source, paper size, orientation and default font size information via the

arguments, to be used by the host application (for example to set the page

setup or printer setup for the currently generated report output). All

arguments are variables of type Double. The GetPageSetupInfo function is

an alternative to the ReportPageInfo event, and may be used for host

platforms that cannot expose events.

GetOutput() Function with return type String, this function will return the whole

content of the report output as a single HTML document. In particular, it

assumes that the report is already generated and the storage active.

SaveOutput(sFilename) Subroutine, this function will save the whole content of the report output

as single HTML document in the file specified via the sFilename argument.

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 9

Note that the argument sFilename is a variable of string type.

SendOutputHTTP(objResponse, [nStartPage], [nEndPage], [lReserved])

 Function with return type Long, this function will return the number of

pages of the output between the nStartPage and nEndPage values. The

HTTP 1.1 compressed content of these pages will be returned via the

objResponse variable of Unknown data type. The other arguments are all

optional and have Long data types. If nStartPage and nEndPage are not

specified, by default the whole report output will be returned in HTTP 1.1

compressed form.

SetBaseMPrintSupportURL(sURLPath)

Subroutine, this function specifies an explicit URL that will be used to

resolve references to custom print templates.

BeginReport() Event, this event is triggered just when the report generation is initiated

but before the generation starts.

BeginPage(nPage) Event, this event is triggered whenever a new page is about to start in the

report generation process. The page number of the new page is passed to

the host via the nPage argument of type Long.

EndPage(nPage) Event, this event is triggered whenever a page is about to end in the

report generation process. The page number of the ending page is passed to

the host via the nPage argument of type Long.

EndReport() Event, this event is triggered just after the report generation is

completed.

Cancelled() Event, this event is triggered when the report generation is interrupted

by the host action.

ReportPageInfo(dLeftMargin, dRightMargin, dTopMargin, dBottomMargin,

dPageSource, dPaperSize, dOrientation, dDefFontSize)

Event, this event is triggered just after a successful BeginReport event and

before the firs BeginPage event. It returns margin, page source, paper size,

orientation and default font size information via the arguments, to be used

by the host application (for example to set the page setup or printer setup

for the currently generated report output). All arguments are variables of

type Double.

SendRGMessage(nMsg) Event, this event is triggered whenever a user-defined message is passed

from the report engine to the host as a result of SendMessage call in the

report script. The argument nMsg is a variable of type Long.

Terminated(sCause, sSourceFilename, nLineNumber)

 Event, this event is triggered whenever the report generation is

terminated as a result of a run-time error, in which case the error cause, the

ELS-file's filename and the line number are passed to the host respectively

via the sCause, sSourceFilename and nLineNumber arguments.

The next common API object that we will describe is the ELSParams class. This class essentially handles the

collection of all the parameter options defined in the PARAM_OPTIONS list of a report script. It has the following

properties:

 Count Property of type Long, this property is read-only and returns the number of

parameters defined in the selected REP-file.

 Name(nIndex) Property of type String, this property is read-only and returns the name of the

parameter specified via the nIndex argument of type Long.

Chapter 3

10 Copyright © 2003, 2004 by Epsilon-Logic Systems

 Type(nIndex, nType) Property of type Long, this property is read-only and returns the array size of the

parameter specified via the nIndex argument or 0. It also passes the data type of the

parameter as an integer value via the nType argument.

Possible nType values returned by the Type property are as follows:

nType Value Data Type Description

0 Void Void data type
1 Bit Integer data with either 0 or 1 value
2 Int Integer data (Long)
3 Smallint Integer data (Short)
4 Tinyint Integer data (Byte)
5 Numeric Numeric data
6 Money Monetary data
7 Smallmoney Monetary data
8 Float Floating precision numeric data
9 Real Floating precision numeric data
10 Datetime Date-time data
11 SmallDatetime Date-time data
12 Timestamp A database-wide unique number (same as SQL Server)
13 UniqueID A globally unique identifier (same as SQL Server)
14 Char Fixed-length non-Unicode string data
15 Varchar Variable-length non-Unicode string data
16 NChar Fixed-length Unicode string data
17 NVarchar Variable-length Unicode string data
18 Binary Fixed-length binary data
19 VarBinary Variable-length binary data
20 Datasource ELS DATASOURCE object type
21 Connection ELS CONNECTION object type
22 QueryOption ELS Query Option
23 Variant Variant data type
24 Null NULL
25 Unknown IUnknown object type
26 Dispatch IDispatch object type
27 Unsupported Unsupported data type

 Table 3.1. Showing all possible data type values

As we will see next in the description of the ELSReport class, that parameter information may be passed from host

application to the report engine via the Param property of the ELSReport class. Moreover, information about the

parameter options may be retrieved via the GetParams() function. In this respect, there is a remarkable and

powerful feature of ELS-Script that makes the API control over the report template extremely flexible. Namely,

almost any content feature in the report template may be controlled and evaluated from the host application via the

Param property.

The ELSReport class has the following properties and methods:

 ReportFilename Property of type String, this property defines the path and the filename of the

binary REP-file.

Param(sParam) Property of type Variant, this property defines the value of user-defined

PARAM_OPTIONS variable specified via the sParam string argument.

GetParams() Function with return type ELSParams object, this function is used to get the list

of all the parameters together with equivalent data type information from the

PARAM_OPTIONS section of the REP-file. So that at run-time the host application may

use this parameter information to make further decisions.

GetQOHeight() Function with return type Long, this function returns the height of the minimum

rectangular region that will contain all the query option controls defined in the

QUERY_OPTIONS section of the REP-file. This function is useful only when used with

the Report Generator window, which therefore applies only to GEV-engines.

GetQOWidth() Function with return type Long, this function returns the width of the minimum

rectangular region that will contain all the query option controls defined in the

QUERY_OPTIONS section of the REP-file. This function is useful only when used with

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 11

the Report Generator window, which therefore applies only to GEV-engines.

As we have seen in Chapter 2, that in version 3.0 of ELS-Script, we have extended the report parameter options to

include Prompt, ValidValues and DefaultValues important properties. To be able to support such properties we

have added new forms of ELSParams and ELSReport classes to the collection of the APIs, namely the

IELSParams2 and IELSReport2. In addition to these classes, we have also implemented and exposed new classes

ELSNamedCollection and ELSParamOption.

The new class IELSParams2 represents the collection of all the parameters used in the selected report, and has the

following members:

 Count Property of type Long, this property retrieves the number of parameters use in the

report script.

 Item(nIndex) Property that returns an object of type ELSParamOption, this property retrieves

the nIndex-th parameter option used in the report script. The nIndex argument is of

type Long.

 Name(nIndex) Property of type String, this property is retained for backwards compatibility with

reports compiled with old versions. It retrieves the name of the nIndex-th parameter.

 Type(nIndex, nType) Property of type Long, this property is retained for backwards compatibility with

reports compiled with old versions. It retrieves the type information of the nIndex-th

parameter (see the definition of the old class ELSParams).

The Item property of the IELSParams2 collection returns an object of type ELSParamOption. This later class

represents an extended parameter option used in the report, and has the following members:

 AllowBlank Property of type Long, this property retrieves the AllowBlank value of the

parameter from the report.

 ArraySize Property of type Long, this property retrieves the array size of the parameter used in

the report.

 DataType Property of type Integer, this property retrieves the data type of the parameter from

the report. Possible values are outlined in Table 3.1.

 LabelAlign Property of type Integer, this property retrieves the label alignment for the

parameter in the report.

 Length([nIndex]) Property of type Long, this property retrieves the data length of the parameter from

the report.

 MultiValue Property of type Long, this property retrieves the MultiValue value of the

parameter from the report.

 Name Property of type String, this property retrieves the name of the parameter from the

report.

 Nullable Property of type Long, this property retrieves the Nullable value of the parameter

from the report.

 Precision Property of type Long, this property retrieves the precision of numeric value of the

parameter from the report.

 Prompt Property of type String, this property retrieves the label text of the parameter from

the report.

 Scale Property of type Long, this property retrieves the scale of the numeric value of the

Chapter 3

12 Copyright © 2003, 2004 by Epsilon-Logic Systems

parameter from the report.

 SourceType Property of type Integer, this property retrieves the source type for the ValidValues

and DefaultValues properties of the parameter. Possible values are: 0 for an

explicit list, or 1 for a data source.

 ValidValues Property of type Variant, this property retrieves the valid values for a parameter

from the report, and returns as a ELSNamedCollection.

 DefaultValues Property of type Variant, this property retrieves the default values for a parameter

from the report, and returns as an ELSNamedCollection.

 Value([nIndex]) Property of type Long, this property defines or retrieves (i.e. Write and Read) the

value for the parameter of the report. The nIndex is optional and applies only when

the parameter has multi-values (i.e. MultiValue is non-zero).

The ELSNamedCollection class is a collection of ELSNamedItem objects, and has the following members:

 Count Property of type Long, this property defines the number of items in the collection.

 Item(nIndex) Property that returns an object of type ELSNamedItem, this property retrieves the

nIndex-th item in the collection.

In turn, the ELSNamedItem class has the following members:

 Name Property of type String, this property defines the name of item.

 Value Property of type Variant, this property defines the value of item.

The IELSReport2 class is the extended version of the ELSReport class, and has the following members:

 Param(sParam) Property of type Variant, this property defines the value of the parameter in the

report specified by sParam. This parameter is retained for backwards compatibility.

 Parameter(vParamIndex, [nValueIndex])

 Property of type Variant, this property defines the value of the parameter in the

report specified variant vParamIndex and the optional Long nValueIndex

arguments. The first argument may be either the name of the parameter or the 0-

based index of the parameter. The second argument applies only when the

parameter is multi-valued.

 ReportFilename Property of type String, this property defines the path and filename of the binary

REP-file of the report.

GetParams() Function that returns object of type ELSParams, this function is retained for

backwards compatibility (use GetParams2 for extended parameters).

GetParams2(oEngine) Function that returns object of type IELSParams2, this function first generates the

ELS_QPARAMS section of the report and then returns the list of all the parameters

used in the report.

The next API object that we will describe is the ELSReportViewer class, which applies only to GEV-engine type.

This class has the following properties and methods:

 Left Property of type Long, this property defines the left coordinate of the Report

Viewer window in pixels.

 Top Property of type Long, this property defines the top coordinate of the Report

Viewer window in pixels.

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 13

 Height Property of type Long, this property defines the height of the Report Viewer

window in pixels

 Width Property of type Long, this property defines the width of the Report Viewer

window in pixels.

Title Property of type String, this property defines the text of the title-bar of the Report

Viewer window. By default if this property is never specified the value will be

"Report Viewer".

WindowMode Property of type Integer, this property defines a combination for the window mode

used in displaying the Report Viewer window. Possible combinations are defined

by the ERepViewerMode enumeration, which has the following possible bit values:

 ELSRV_MODAL to make window modal,

 ELSRV_MAXIMIZED to make window maximized,

 ELSRV_NOMINBTN to hide window's min button,

 ELSRV_NOMAXBTN to hide window's max button.

By the default WindowMode = 0, which means a modeless and normal window with

min/max/close buttons.

For example, in Visual Basic setting WindowMode to

ELSRV_MODAL + ELSRV_NOMINBTN + ELSRV_NOMAXBTN

will display the Report Viewer as a modal window without the min and max

buttons.

PopupMenu Property of type Long, this property defines the visibility of the popup menu in the

Report Viewer window, by default the menu will be visible whenever the end-user

clicks the right mouse button.

ToolbarButtons Property of type Integer, this property defines the visibility of the toolbar buttons

in the Report Viewer window. Possible combinations are defined by the

ERepViewerToolBtns enumeration, which has the following possible bit values:

 ELSRV_NOSAVEBTN to hide the Save button,

 ELSRV_NOPRINTBTN to hide the Print button,

 ELSRV_NOPVIEWBTN to hide the Print Preview button,

 ELSRV_NOCOPYBTN to hide the Copy button,

 ELSRV_NOSELALLBTN to hide the Select All button,

 ELSRV_NOHLITEBTN to hide the High-light button,

 ELSRV_NOCOLORBTN to hide the Color selector button,

 ELSRV_NOFINDBTN to hide the Find button,

 ELSRV_NOFIRSTBTN to hide the First page button,

 ELSRV_NOPREVBTN to hide the Previous page button,

 ELSRV_NONEXTBTN to hide the Next page button,

 ELSRV_NOLASTBTN to hide the Last page button.

By default ToolbarButtons = 0, which means that all buttons of the toolbar will be

visible. Note that the Run and Stop buttons are not controlled by this property and

must be always visible.

WebBrowser Property of type Unknown, this property is read-only and is used to expose the

internal web browser of the Report Viewer to the host application.

Show(bShow, bCenter) Function with return type Long, this function is used to show or hide the Report

Viewer window with the window mode defined via the WindowMode property.

Both arguments are optional variables of type Long, and have by default TRUE

values. The first argument controls the visibility of the window, while the second

argument whether to center the window or not. Note that, the properties Left, Top,

Height and Width apply only when the bCenter argument is FALSE.

The next API object that we will describe is the ELSReportGenerator class, which also applies only to GEV-engine

type. This class has the following properties, methods and events:

Chapter 3

14 Copyright © 2003, 2004 by Epsilon-Logic Systems

 Left Property of type Long, this property defines the left coordinate of the Report

Generator window in pixels.

 Top Property of type Long, this property defines the top coordinate of the Report

Generator window in pixels.

 Height Property of type Long, this property defines the height of the Report Generator

window in pixels.

 Width Property of type Long, this property defines the width of the Report Generator

window in pixels.

 Title Property of type String, this property defines the text of the title-bar of the Report

Generator window. By default if this property is not assigned the value will be

"Report Generator".

 RunButtonText Property of type String, this property defines the text of the Run button in the

Report Generator window. By default this property has the value "Run".

 CancelButtonText Property of type String, this property defines the text of the Cancel button in the

Report Generator window. By default this property has the value "Cancel".

 ReportLabelText Property of type String, this property defines the text of the report list label in the

Report Generator window. By default this property has the value "Report:".

 ReportEngine Property of type ELSReportEngine object, this property defines the report engine

used by the Report Generator window.

 ReportList Property of type ELSReportList object, this property defines the report list used in

the Report Generator window.

 Show(bShow, bCenter) Function with return type Long, this function is used to show or hide the Report

Generator window. Both argument are optional variables of type Long, and have

by default TRUE values. The first argument controls the visibility of the window,

while the second argument whether to center the window or not. Note that

properties Left, Top, Height and Width apply only when the bCenter argument is

FALSE.

 OnRun() Event, this event is triggered when the user clicks the Run button in the Report

Generator window, and just before the Report Viewer displays, and the report

generation starts.

 OnCancel() Event, this event is triggered when the user clicks the Cancel button in the

Report Generator window and just before the window hides (the Close button of

the window will also trigger this same event).

The ReportList property is an instance of the ELSReportList class, which has the following properties and

methods:

 Visible Property of type Long, this property defines the visibility of the report list

in the Report Generator window. By default the report list is visible.

Height Property of type Long, this property defines the height (in pixels) of the

report list inside the Report Generator window.

 Width Property of type Long, this property defines the width (in pixels) of the

report list inside the Report Generator window.

 AlternateRowColor Property of type Long, this property defines the background color of the

alternate row of the report list grid.

By default AlternateRowColor = RGB(255, 255, 180).

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 15

 IDXPath Property of type String, this property defines the path where the IDX-files

are located. Note that if there are multiple IDX-files in a directory, then the

content of all will be concatenated and displayed in the report list of the

Report Generator window.

 Font Property of type ELSListFont object, this property defines the style, color

and size of the font of the report list grid.

 ColumnRatio(nCol1Width) Subroutine to define the width ratio in percent of the two columns of the

grid in the report list, namely the Report Title and Filename. The

argument nCol1Width will define the percentage of the first column, for

example setting nCol1Width to 60, will make the Report Title column

width 60% of the grid width, while the second column, Filename will have

width 40%. In particular, setting nCol1Width = 100, will hide the Filename

column.

 OnSelChange(sFilename) Event, this event is triggered whenever the user changes the selection in

the report list and just before the query option controls are updated on the

right side of the Report Generator window. The argument sFilename will

pass the filename of the report selected in the report list grid to the host

application.

Finally, the Font property of the ELSReportList class is an object of type ELSListFont class, which has the

following properties:

 Style Property of type String, this property defines the name of the font type.

The default value is "Arial".

 Size Property of type Long, this property defines the size of the font in points.

The default value is 10pt.

 Color Property of type Long, this property defines the color of the font in RGB.

The default value is RGB(0, 0, 0), which is black.

GEV-engine Usage

In this section we illustrate the usage of the GEV-engine type of the report engine in the three methods described in

the previous sections, namely methods (a), (b) and (c). All the samples in this section will be in Visual Basic.

Sample applications in other host languages, such as ASP and VB.NET, will be included in the later chapters of

this book. For reasons of portability all of the samples and report scripts will use the Northwind.MDB MS-Access

database. The user may easily change the backend database by modifying the connection string that is hard-coded

in the sample's source code. For completeness, we have included full source code together with report scripts and a

copy of the Northwind.MDB database, in the Samples subdirectory of the installation directory of the ELS-Script

software package.

We will start with the scenario described by method (a). Recall that in this method, we want to use the Report

Viewer window via the Report Generator dialog. The source code of the Visual Basic sample that hosts such a

scenario is included in the Samples\VB\REPGEN_GEV subdirectory of the directory where the ELS-Script

software is installed. In particular, we suggest that the reader opens the VB project file RepGenGEV.vbp in this

subdirectory and follow the source code in parallel with the outline presented here.

After opening the VB project RepGenGEV.vbp, the first thing that we should observe is that the report engine

ELSRepGenGEV 2.0 Library is included in the References dialog of the VB project. The application consists of an

MDI form with menus and toolbar commands. The Open Project menu command basically utilizes the open file

window's common dialog to specify the IDXPath parameter of the Report Generator window, which is called

from inside the GEV-engine. Therefore, the main code is in the VB form frmMDI, which essentially handles this

MDI interface with all required operations.

The code in the frmMDI form starts with the declaration of some global variables and objects. In particular, the

Chapter 3

16 Copyright © 2003, 2004 by Epsilon-Logic Systems

following objects are declared:

' Global variables
Public g_sProjectFilePath As String ' IDXPath
Public g_ConnString As String ' connection string
Public g_oConn As New ADODB.Connection ' ADO connection object
Public WithEvents g_oRepGen As ELSReportGenerator ' Report Generator window
Public WithEvents g_oRepEngine As ELSReportEngine ' Report Engine instance
Public WithEvents g_oRepList As ELSReportList ' Report List object

Note that there is no need for an ELSReportViewer object since the Report Viewer window is called internally via

the Report Generator window. The VB code continues with declaration of form level variables followed by the

MDIForm_Load subroutine, in which the toolbar and status-bar properties are defined followed by the

initialization of the already declared global objects, and finally the connection string g_ConnString is set.

 ' Initialize global variables
 Set g_oConn = Nothing
 Set g_oRepGen = Nothing
 Set g_oRepEngine = Nothing

 ' Define the connection string value
 ' (Please modify connection string value if you have a different data source path)
 g_ConnString = "Provider=Microsoft.Jet.OLEDB.4.0;
 Data Source=C:\ELSS\Samples\Data\Northwind.mdb;Persist Security Info=False"

The next subroutine that is called by the OpenProject() procedure is the InitGenerator(), which initializes the

ELSReportGenerator object by setting all its properties, as illustrated in the code snippet below:

Public Sub InitGenerator()
 With g_oRepGen
 .Height = 340
 .Width = 644
 .Title = "NW Report Generator"
 .ReportLabelText = "Existing Reports:"
 .RunButtonText = "OK"
 .CancelButtonText = "Close"
 .ReportList.Height = 246
 .ReportList.Width = 360
 .ReportList.AlternateRowColor = RGB(230, 230, 255)
 .ReportList.ColumnRatio 70
 .ReportList.Font.Color = RGB(0, 0, 0)
 End With
End Sub

The OpenProject() subroutine is triggered via the Open Project menu item under the File menu, and has the

following main code lines:

 Dim bAttachEngine

 bAttachEngine = (g_oRepGen Is Nothing)
 If Not g_oRepGen Is Nothing Then
 g_oRepGen.Show ELS_HIDE
 Else
 Set g_oRepGen = New ELSReportGenerator
 InitGenerator
 End If
 With commonDlgOpen
 .Filter = "Project Files (*.idx)|*.idx"
 .CancelError = True
 .DialogTitle = "Open project file:"
 .Flags = cdlOFNHideReadOnly Or cdlOFNOverwritePrompt
 .ShowOpen
 On Error GoTo 0
 g_oRepGen.ReportList.IDXPath = .FileName

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 17

 g_oRepGen.Show ELS_SHOW
 If bAttachEngine Then
 Set g_oRepEngine = g_oRepGen.ReportEngine
 End If
 Set g_oRepList = g_oRepGen.ReportList
 OpenConnection
 End With

As we have noted that this subroutine creates an ELSReportGenerator object and initializes this object's properties

via the InitGenerator() subroutine. Then opening the open file common dialog it gets the IDXPath value from the

user-specified path, and displays the Report Generator window. The subroutine proceeds by setting the

g_oRepEngine and g_oRepList objects respectively to the ELSReportEngine instance and ELSReportList instance of the

Report Generator. Finally the OpenConnection() subroutine is called, which essentially resets the ADO

connection object g_oConn, and then opens this connection using the value of g_ConnString as connection string.

If this connection is successful, then this connection object is passed to the internal report engine object of the

g_oRepGen object. The following code snippet illustrates this process:

 ' Reset global connection variable
 ResetConnection
 On Error GoTo ErrConHandler

 ' Instantiate and open connection object
 Set g_oConn = New ADODB.Connection
 g_oConn.Open g_ConnString, "", "", adOpenUnspecified

 If g_oConn.State = adStateOpen Then
 ' Use client-side cursor
 g_oConn.CursorLocation = adUseClient
 ' Set the connection object of report engine to this open connection
 g_oRepGen.ReportEngine.Connection = g_oConn
 Else
 MsgBox "Connection failed."
 End If

With the outlined code lines, the host application will display the Report Generator window, which lists all the

reports of the selected IDX-file in the report list. The end-user may at this point select a report from this list and hit

the OK button (i.e. the Run button which has label text "OK") of the Report Generator window. Recall that when

the report list selection is changed, events internal to the selected report's query form controls will be activated, in

this way updating the query form section of the Report Generator window. Moreover, the end-user may set or

enter values of these query form control prior to clicking the OK button, which will determine the query

conditions for the report to be generated. When the report generation is triggered from the Report Generator

window via the OnRun() event, the report engine's internal IWebBrowser2 interface is passed to the InitViewer

subroutine, which essentially becomes the instance of the ELSReportViewer class.

' Initialize the viewer whenever the user runs a new report via the Report Generator
Private Sub g_oRepGen_OnRun()
 ' Use the report engine's internal IWebBrowser2 interface as HTML viewer
 InitViewer g_oRepGen.ReportEngine.TargetBrowser
End Sub

' Define the initial values of the properties of Report Viewer window
Public Sub InitViewer(oViewer As ELSReportViewer)
 If Not oViewer Is Nothing Then
 With oViewer
 .Height = 700
 .Width = 770
' .Top = 0
' .Left = 0
 .Title = "NW Report Generator"
 .PopupMenu = True
' .ToolbarButtons = ELSRV_NOPVIEWBTN + ELSRV_NOFINDBTN + ELSRV_NOPRINTBTN
' .WindowMode = ELSRV_MAXIMIZED+ELSRV_NOMINBTN + ELSRV_NOMAXBTN
 .Show ELS_SHOW, ELS_CENTERED
 End With
 End If

Chapter 3

18 Copyright © 2003, 2004 by Epsilon-Logic Systems

End Sub

In the code listing above, the g_oRepGen_OnRun() subroutine calls the InitViewer subroutine, which initializes the

Report Viewer window, setting all the properties and eventually displaying the window via the Show function of

ELSReportViewer class. Note that the ELS_CENTERED value of the second argument will force the Report Viewer

window to be centered ignoring the Left and Top property values.

Note that when the OK button is clicked, the report generation process is triggered internally via the Report

Generator window, and therefore there is no need to call the GenerateReport function of the ELSReportEngine

class to generate the selected report.

The final two important subroutines have the following code:

' Catch report engine error messages via Terminated event of report engine
Private Sub g_oRepEngine_Terminated(ByVal bstrCause As String,
 ByVal bstrSourceFileName As String, ByVal nLineNumber As Long)
 MsgBox "Report generation Error:" & vbCrLf & vbCrLf & bstrCause
 stBarMDI.SimpleText = "Report Generation error."
End Sub

Private Sub MDIForm_Unload(Cancel As Integer)
 If Not Cancel Then
 ResetConnection
 ' both objects must be destroyed to clear STG-files
 Set g_oRepGen = Nothing
 Set g_oRepEngine = Nothing
 End If
End Sub

The form Unload procedure essentially forces the destruction of the g_oRepGen and g_oRepEngine objects, which

is required to clear the STG-files for the last generated report. The g_oRepEngine_Terminated subroutine handles

the Terminated event of the ELSReportEngine class. Recall that this event is triggered by the report engine

whenever a run-time error occurs.

In order to test the RepGenGEV.vbp VB project, we will need a SCRIPT project with proper report scripts. The

Samples\SCRIPT\TestProj1 subdirectory contains the TestProj1.RPJ SCRIPT project, which contains the

following report scripts:

PlainHTML.ELS example of report that makes use of HTML Table for tabular presentation,

BasicROW.ELS example of report that makes use of ELS-Row for tabular presentation,

DataShape1.ELS example of report that makes use of ELS-Rows and Data Shapes,

DataShape2.ELS another example of a report using ELS-Rows and Data Shapes,

FormatTest.ELS this report examines all possible Format combinations,

FunctionsTest.ELS this report examines all the other SCRIPT functions,

OrdsByProdsWithChart.ELS example of report that utilizes MS-Chart ActiveX component,

RunningTotals.ELS example of report with running totals,

PendingVarTest.ELS example of report that makes use of pending variables,

SendMessageTest.ELS this report tests the SendMessage SCRIPT function,

NWInvoice.ELS this report is the SCRIPT version of the standard Northwind invoice.

Opening this SCRIPT project and building all the reports will create the binary REP-files along with the IDX-file

in the BIN subdirectory. Pointing the open file common dialog of the VB host application to this IDX-file, the user

may be able to complete the testing of this sample application.

We consider now another Visual Basic sample application, which hosts the report engine following the scenario in

method (b). Recall that in this alternative method, one is utilizing the Report Viewer window without using the

Report Generator, in which case a custom parameter option form must be implemented in Visual Basic. The

source code of the current sample application is included in the Samples\VB\REPVIEWER_GEV subdirectory of

the root directory where the ELS-Script software is installed. The VB project RepViewerGEV.vbp contains the

following main forms:

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 19

 frmMDI which is the main MDI form,

 frmRepGen which is the custom report generator VB form,

 ConnectDlg which is the data access connection definition dialog.

Since, in this case the standard built-in Report Generator of the ELSRepGenGEV engine will not be used, we

need to plan the development of all the report scripts prior to the integration of the report engine with the host

application. The SCRIPT project TestProj2.RPJ, under the C:\ELSS\Samples\SCRIPT\TestProj2 subdirectory, is

used for this purpose, and contains to the following report script files:

PlainHTML.ELS example of report that makes use of HTML Table for tabular presentation,

BasicROW.ELS example of report that makes use of ELS-Row for tabular presentation,

DataShape1.ELS example of report that makes use of ELS-Rows and Data Shapes,

DataShape2.ELS another example of a report using ELS-Rows and Data Shapes,

OrdsByProdsWithChart.ELS example of report that utilizes MS-Chart ActiveX component,

NWInvoice.ELS this report is the SCRIPT version of the standard Northwind invoice.

Note that the OrdsByProdsWithChart.ELS and NWInvoice.ELS reports have been modified to interface with the

host application. In particular, the query option variables in these two report script have been replaced by

equivalent parameter option variables (check the ELS_QPARAMS sections of these report scripts for more details).

The host application starts with the declaration of global objects and variables:

' Global objects and variables
Public g_sScriptDir As String
Public g_ConnString As String
Public g_bRepGeneration As Boolean
Public g_oConn As New ADODB.Connection
Public WithEvents g_oRepEngine As ELSReportEngine
Public g_oRepViewer As ELSReportViewer
Public g_oReport As ELSReport

' Form level variables
Public tbVisible As Boolean
Public stbarVisible As Boolean

Observe that in this application we did not declare any ELSReportGenerator objects, instead we declared a

ELSReportViewer object. In the form load event, after the toolbar and status-bar construction, some of these global

objects and variables are initialized and the path to the BIN subdirectory of the compiled reports is stored in the

g_sScriptDir variable to be used later in the frmRepGen module.

 Set g_oConn = Nothing
 Set g_oReport = Nothing
 Set g_oRepEngine = Nothing
 Set g_oRepViewer = Nothing

 ' Define path to the BIN subdirectory
 g_sScriptDir = "C:\ELSS\Samples\SCRIPT\TestProj2\BIN\"

 ' Define the connection string
 g_ConnString = "Provider=Microsoft.Jet.OLEDB.4.0;
 Data Source=C:\ELSS\Samples\Data\Northwind.mdb;Persist Security Info=False"

Set g_oRepEngine = New ELSReportEngine
 g_oRepEngine.Initialize

The custom report list dialog is called via the Open Report List menu of the frmMDI VB form. This dialog is

controlled by the frmRepGen VB form module, which starts with filling the list-box lstRepList with constant

strings representing the reports, as shown in the form load event:

Private Sub Form_Load()
 lstRepList.AddItem "Plain HTML Tabulation"

Chapter 3

20 Copyright © 2003, 2004 by Epsilon-Logic Systems

 lstRepList.AddItem "Basic ELS-Row Tabulation"
 lstRepList.AddItem "Orders/Details Data Shape 1"
 lstRepList.AddItem "Orders/Details Data Shape 2"
 lstRepList.AddItem "Orders By Products With Chart"
 lstRepList.AddItem "Nothwind Invoice"
End Sub

The frmRepGen form contains the following controls:

 lstRepList List-box control to display report names or description,

lblCombo1 Label control to show the parameter caption for the report selected in lstRepLits,

 lblParamInfo Label control to display the parameter structure of the report selected in lstRepList,

 txtOrdID Textbox control to enter OrderID value,

 Combo1 Combo-box control to select chart type.

The txtOrdID and Combo1 controls are hidden by default, when the user selects the Northwind Invoice report in the

lstRepList list-box, the txtOrdID textbox becomes visible and the caption of the lblCombo1 is updated to show

"Order ID :". Similarly, when the Order By Products With Chart report is selected the Combo1 control becomes

visible and the caption of the lblCombo1 becomes "Chart Type :". Note that the purpose of these mechanisms is

to dynamically update the parameter options of the frmRepGen form depending on the report selection in the report

list. The following code lines of the lstRepList_Click() subroutine illustrate these mechanisms:

 Dim sFilename As String

 lblCombo1.Visible = False
 Combo1.Visible = False
 txtOrdID.Visible = False
 ' Start with the path to BIN, then add report filename of select report
 sFilename = frmMDI.g_sScriptDir
 Select Case lstRepList.ListIndex
 Case 0: sFilename = sFilename + "PlainHTML.rep"
 Case 1: sFilename = sFilename + "BasicROW.rep"
 Case 2: sFilename = sFilename + "DataShape1.rep"
 Case 3: sFilename = sFilename + "DataShape2.rep"
 Case 4:
 sFilename = sFilename + "OrdsByProdsWithChart.rep"
 lblCombo1.Caption = "Chart Type :"
 lblCombo1.Visible = True
 Combo1.Visible = True
 ' Fill the combo with chart types
 Combo1.Clear
 Combo1.AddItem "2D Bar"
 Combo1.AddItem "3D Bar"
 Combo1.AddItem "2D Line"
 Combo1.AddItem "3D Line"
 Combo1.AddItem "2D Area"
 Combo1.AddItem "3D Area"
 Combo1.AddItem "2D Step"
 Combo1.AddItem "3D Step"
 Combo1.AddItem "2D Pie"
 Combo1 = "2D Bar"
 Case 5:
 sFilename = sFilename + "NWInvoice.rep"
 txtOrdID.Visible = True
 lblCombo1.Caption = "Order ID :"
 lblCombo1.Visible = True
 End Select

 Dim I, nCnt, lType As Integer
 Dim oParams As ELSParams

 ' Initialize the global ELSReport object
 Set frmMDI.g_oReport = Nothing
 Set frmMDI.g_oReport = New ELSReport

 ' Set the filename, identify the report template
 frmMDI.g_oReport.ReportFileName = sFilename
 ' Get all parameter options from the report template
 Set oParams = frmMDI.g_oReport.GetParams

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 21

 Dim sItem As String
 Dim lArrSize As Long
 nCnt = oParams.Count
 ' For all parameter options get the name and data type
 For I = 0 To nCnt - 1
 lArrSize = oParams.Type(I, lType)
 sItem = sItem & oParams.Name(I) & " : " & DataTypeName(lType) & vbCr
 If lArrSize > 1 Then
 sItem = sItem & oParams.Name(I) & "(" & Mid$(Str(lArrSize), 2) & ") : " _
 & DataTypeName(lType) & vbCr
 End If
 Next I
 lblParamInfo.Caption = sItem

Besides dynamically setting the appropriate parameters, the lstRepList_Click() subroutine also sets the ELSReport

object and retrieves the parameter option information from the selected report template.

When the user selects a report from the lstRepList report list-box, sets the proper parameters, and then clicks on the

OK button, the cmdRun_Click() subroutine gets activated. This subroutine, essentially checks if data access

connection is established, if a connection is not open it calls the connectDlg form to connect. It then proceeds to

check the proper parameter values and utilizing these values, the procedure finally calls the GenerateReport

subroutine of the frmMDI module. This is illustrated in the following code lines:

Private Sub cmdRun_Click()
 ' Call the connection dialog if no connection is open
 If frmMDI.g_oConn.State <> adStateOpen Then
 connectDlg.Show vbModal
 End If

 ' Validate parameter entry and set g_oReport parameter to valid value
 If lstRepList.ListIndex = 4 Then
 frmMDI.g_oReport.Param("ChartType") = Combo1
 ElseIf lstRepList.ListIndex = 5 Then
 If txtOrdID = "" Then
 MsgBox "Please enter some value for Order ID!"
 txtOrdID.SetFocus
 Exit Sub
 End If
 frmMDI.g_oReport.Param("OrderID") = txtOrdID
 End If
 ' Call the main generation process
 frmMDI.GenerateReport
End Sub

The GenerateReport subroutine has the following code lines:

Public Sub GenerateReport()
 On Error Resume Next
 ' Initialize the report viewer object
 If Not g_oRepViewer Is Nothing Then
 Set g_oRepViewer = Nothing
 End If
 Set g_oRepViewer = New ELSReportViewer
 ' Set the properties of the viewer object
 InitViewer g_oRepViewer

' Set the web-browser interface of the report engine to the viewer object
 g_oRepEngine.TargetBrowser = g_oRepViewer
 ' Call the GenerateReport API function to generate report
 g_oRepEngine.GenerateReport g_oReport, ELS_SHOW
End Sub

We complete the outline of the source code of the current host application by listing the event handlers for some of

the events of the report engine.

Private Sub g_oRepEngine_BeginReport()

Chapter 3

22 Copyright © 2003, 2004 by Epsilon-Logic Systems

 stBarMDI.SimpleText = "Starting Report Generation"
 g_bRepGeneration = True
End Sub

Private Sub g_oRepEngine_EndReport()
 stBarMDI.SimpleText = "Report Generation completed"
 g_bRepGeneration = False
End Sub

Private Sub g_oRepEngine_Terminated(ByVal bstrCause As String, ByVal bstrSourceFileName As
String, ByVal nLineNumber As Long)
 MsgBox "Report generation Error:" & vbCrLf & vbCrLf & bstrCause
 stBarMDI.SimpleText = "Report Generation error."
 g_bRepGeneration = False
End Sub

Private Sub g_oRepEngine_Cancelled()
 stBarMDI.SimpleText = "Report Generation terminated by user."
 g_bRepGeneration = False
End Sub

The BeginReport, EndReport and Cancelled event handlers, in this case, just control the global variable

g_bRepGeneration depending on the start, end or cancellation of the report generation process. The Terminated

event handler essentially catches any run-time error that may occur during the report generation process.

E-engine Usage

In the next samples we will use a design that follows method (c). Recall that in this method the Report Generator

and Report Viewer windows are not used, instead the report output must be viewed in an alternative web browser.

This makes the ELSRepGenE.DLL (i.e. type E-engine) component a more suitable report engine than the overly

sized ELSRepGenGEV.DLL. In fact, for web reporting the E-engine is the recommended engine, simply because of

its smaller footprint and internal HTTP 1.1 compression. Therefore, in all the samples that follow, we will use the

ELSRepGenE.DLL as our report engine.

The next sample application is a server-based ASP application, in which the report generation is performed

entirely on the web server, and all that the client-side will need is the IE browser, or any browser that is compatible

with ASP, Java and VB scripting.

To be able to run this server-based ASP application, use the Internet Services Manager to create a virtual

directory. For example, select the New > Virtual Directory menu item of the Action menu. This will call the

Virtual Directory Creation Wizard window, click the Next button to get to Virtual Directory Alias and enter

the alias ELSS3ASPSample. Click Next to get to Web Site Content Directory and enter the path of the sample

files, for example, C:\ELS\ELSS\Samples\ASP. Then click Next to get to Access Permissions, make sure the

checkboxes Read, Run scripts and Browse are checked. Then click Next and then Finish to complete the setup.

The sample essentially consists of a main web page MainPage.htm, from where the end-user can jump to individual

2-framed web report viewer via the following hyperlinks:

 Orders By OrderID Report
 Orders By Date Range Report
 Orders By OrderDate Report
 All Invoices Report
 Invoice
 Sales Summaries with Charts
 Report with Picture
 Simple XML Report
 Report with VML Chart

These hyperlinks call the ReportViewer.asp web page with respectively the following HTML anchor HREF-s:

 href = "ReportViewer.asp?RepFile=/REPFolder2/OrdersByOrderID.rep&DBIndex=0"
 href = "ReportViewer.asp?RepFile=/REPFolder1/OrdersByDateRange.rep

&ParamNames=BeginDate;EndDate&ParamValues=01/01/1995;06/01/1997"
 href = "ReportViewer.asp?RepFile=/REPFolder1/OrdersByOrderDate.rep"

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 23

 href = "ReportViewer.asp?RepFile=/REPFolder1/AllInvoices.rep"
 href = "ReportViewer.asp?RepFile=/REPFolder1/Invoice.rep"
 href = "ReportViewer.asp?RepFile=/REPFolder2/SalesSumChart.rep"
 href = "ReportViewer.asp?RepFile=/REPFolder1/AbsPosPictReport.rep"
 href = "ReportViewer.asp?RepFile=/REPFolder2/SimpleXMLReport.rep"
 href = "ReportViewer.asp?RepFile=/REPFolder2/VMLChartReport.rep"

The actual SCRIPT source files of these compiled binary report REP-files may be found in the project folder for

the WebSampleProject.RPJ report project, namely \Samples\SCRIPT\WebSampleProject subdirectory. Therefore,

for further analysis about the content of these reports, you may open the WebSampleProject.RPJ report project via

the Report Designer application and view the corresponding report scripts.

We start the outline of the source code for this sample with the Session_OnStart and Session_OnEnd session

events, which are traditionally included in the global.asa file. In particular, in the Session_OnStart event, note that

we create the ELSReportEngine and ELSReport objects and initialize the report engine and all global variables.

Sub Session_OnStart
 Session("PageCount") = 1 ' to handle the report output page count
 Session("CurrPage") = 1 ' to keep track of the current output page
 Session("InGeneration") = 0 ' in generation process or not
 Session("RepIndex") = 0 ' the index of the report file
 Session("DlgHeight") = 0 ' the parameter dialog’s height
 Session("EngineConnected") = False ' engine connected or not
 Session("ReportInitialized") = False ' report initialized or not
 Session("RepName") = "" ' to pass the report filename
 Session("ParamName") = "" ' to pass the parameter name
 Session("DlgContent") = "" ' to pass the parameter dialog's content
 Session("ShowParamsDialog") = 1 ' show parameter dialog or not
 Session("ParamNames") = "" ' to pass the parameter names array
 Session("ParamValues") = "" ' to pass the parameter values array
 Session("Conn") = Null ' to handle the data connection object
 Session("ParamsObject") = Null ' to handle the parameter objects used in report

 ' this assumes that the data is located outside the virtual directory location,
 ' therefore, we use the server’s root path minus the string "\ASP"

Dim sRootPath
 sRootPath = Server.MapPath(".")
 sRootPath = Left(sRootPath, Len(sRootPath)-4)

 ' constant data access connections for multiple databases
 Session("ConnStr0") = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Persist Security Info=False;Data Source=" & sRootPath & "\Data\Northwind.mdb"
 Session("ConnStr1") = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Persist Security Info=False;Data Source=" & sRootPath & "\Data\AnotherDB.mdb"
 ' ... add more ConnStr constants here as required ...

 ' puting the connection string information in global.asa will make it secure,
 ' and to select a defined particular connection, pass the DB index number from
 ' the main HTML page as a ReportViewer.asp parameter
 Session("ConnectString") = Session("ConnStr0")

 ' create the report engine and report object instances

Set Session("ReportEngine") = server.CreateObject("ELSRepGenE.ELSReportEngine")
 Set Session("Report") = server.CreateObject("ELSRepGenE.ELSReport")

 If IsObject(Session("ReportEngine")) Then
 ' declare variables for file system objects
 Dim objFSO, objFile, objFileItem, objFolder, objFolderContent, TempDir

 ' initialize the report engine
 Session("ReportEngine").Initialize
 ' define the report engine's storage path
 TempDir = Server.MapPath(".") & "\Bin\Temp\"
 Session("ReportEngine").SetStoragePath TempDir

 ' create a file system object instance, this file system will be used to cleanup
 ' possible left-over STG storage files in the TempDir storage path
 Set objFSO = server.CreateObject("Scripting.FileSystemObject")
 Set objFolder = objFSO.GetFolder(TempDir)
 Set objFolderContent = objFolder.Files

Chapter 3

24 Copyright © 2003, 2004 by Epsilon-Logic Systems

 ' attempt to delete all the content of the storage path directory,
 ' note that the error mechanism is used to delete only the files
 ' for which access privilege is granted (i.e. not in use by others)
 For Each objFileItem In objFolderContent
 On Error Resume Next
 objFSO.DeleteFile TempDir & objFileItem.Name
 If Err.Number <> 0 Then
 Err.Clear
 End If
 Next
 End If
End Sub

Observe in this code that all important steps of the routine are properly described via comment lines, and that

essentially, the main functions of the routine are to declare session variables, initialize the report engine and report

object instances, define the possible database connection strings, define the STG storage path, and finally perform

some file cleaning operations.

In the Session_OnEnd event the connection object is destroyed, the report engine is un-initialized, and then the

ELSReportEngine and ELSReport objects are destroyed, this is shown in the code below:

Sub Session_OnEnd
 If IsObject(Session("Conn")) Then
 If Session("Conn").State = adStateOpen Then
 Session("Conn").Close
 End If
 Set Session("Conn") = Nothing
 End If

If IsObject(Session("ReportEngine")) Then
 Session("ReportEngine").UnInitialize

End If
Set Session("ReportEngine") = Nothing

 Set Session("Report") = Nothing
End Sub

The call to the ReportViewer.asp starts with the following ASP code:

On Error Resume Next
Dim oOldParams

' check if ELSReportEngine and ELSReport object instances are created
If IsObject(Session("ReportEngine")) And IsObject(Session("Report")) Then
 If Request.QueryString("Action") = "re-run" Then
 Set oOldParams = Session("Report").GetParams()
 If Err.number <> 0 Then
 Response.Write "Parameter access error: " & Err.Description
 Err.Clear
 End If
 Else
 Set Session("Report") = Nothing
 Set Session("Report") = server.CreateObject("ELSRepGenE.ELSReport")
 End If

 ' if DBIndex is not specified then use the default database
 If Request.QueryString("DBIndex") = "" Then
 Session("ConnectString") = Session("ConnStr0")
 Else
 Session("ConnectString") = Session("ConnStr"+Request.QueryString("DBIndex"))
 End If

 sConnStr = Session("ConnectString")
 ' call the ConnectEngine function passing the connection string to the report engine
 Session("EngineConnected") = ConnectEngine(sConnStr)
End if

If Session("EngineConnected") Then
 ' define the path to the Phookctl.CAB file which contains the Printer class
 sBaseAddr = "http://" & Request.ServerVariables("SERVER_NAME") & _

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 25

 Request.ServerVariables("PATH_INFO")
 sCabAddr = Left(sBaseAddr, InStrRev(sBaseAddr, "/", -1, 1)) & _
 "BIN/Phookctl.CAB#Version=1,0,0,4"

 ' attempt loading the report
 bLoadSuccess = LoadReport()
 If bLoadSuccess Then
 ' set the session variable RepName to the RepFile parameter passed to this page
 Session("RepName") = Request.QueryString("RepFile")
 ' use the GetParams2() API function to retrieve report parameters from the REP-file
 Set Session("ParamsObject") = Session("Report").GetParams2(Session("ReportEngine"))
 If Err.number <> 0 Then
 Response.Write "Generation Error: " & Err.Description
 Err.Clear
 Session.Abandon
 End If
 If Request.QueryString("Action") <> "re-run" Then
 Session("ParamNames") = Request.QueryString("ParamNames")
 Session("ParamValues") = Request.QueryString("ParamValues")
 End If

 ' split the parameters specified in the ParamNames
 Dim arrQueryStringParams
 arrQueryStringParams = Split(Session("ParamNames"), ";", -1, 1)

 ' get the number of parameters from the report
 Session("ParamCount") = Session("ParamsObject").Count

 ' construct the parameter dialog based on the information in the ParamsObject
 Dim nCurrTop
 Dim sDlgOuterHTML
 nCurrTop = 15
 nCtrlHeight = 30
 Session("DlgHeight") = 0 ' reset DlgHeight
 nQSUnspecifiedCount = 0

 For I = 0 To Session("ParamsObject").Count - 1
 nCtrlHeight = 30
 ' get the I-th parameter from the parameter collection
 Set oParam = Session("ParamsObject").Item(I)
 If Not IsInQueryStringSpecified(oParam, arrQueryStringParams) Then
 ' label
 sDlgOuterHTML = sDlgOuterHTML & GetLabelOuterHtml(oParam, nCurrTop)

 ' get parameter's ArraySize
 nArraySize = oParam.ArraySize

 ' array of similar controls with no valid values list
 If nArraySize > 1 And IsNull(oParam.ValidValues) Then
 For J = 0 To nArraySize - 1
 sDlgOuterHTML = sDlgOuterHTML &
 GetCtrlOuterHtml(oParam, nCurrTop, I, J)
 nCurrTop = nCurrTop + 30
 Next
 nCtrlHeight = 0
 ' list-Box
 ElseIf nArraySize > 1 And oParam.MultiValue Then
 sDlgOuterHTML = sDlgOuterHTML &
 GetListCtrlOuterHtml(oParam, nCurrTop, I)
 nCtrlHeight = 80
 ' combo-box
 ElseIf Not IsNull(oParam.ValidValues) Then
 sDlgOuterHTML = sDlgOuterHTML &
 GetComboCtrlOuterHtml(oParam, nCurrTop, I)
 ' single control
 Else
 sDlgOuterHTML = sDlgOuterHTML &
 GetCtrlOuterHtml(oParam, nCurrTop, I, 0)
 End If
 nCurrTop = nCurrTop + nCtrlHeight
 nQSUnspecifiedCount = nQSUnspecifiedCount + 1
 End If
 Next

 ' It is assumed that at least one parameter is explicitly not specified

Chapter 3

26 Copyright © 2003, 2004 by Epsilon-Logic Systems

 ' in order for the parameter dialog to prompt
 If nQSUnspecifiedCount > 0 Then
 ' prompt the dynamically created parameter dialog
 ' for the user to enter the required report parameters
 Session("ShowParamsDialog") = 1

 ' add Run and Cancel buttons to dialog content
 sDlgOuterHTML = sDlgOuterHTML & _
 "<INPUT id=btnRun type=button value=Run name=btnRun
style='BACKGROUND-COLOR:gainsboro;Z-INDEX: 100; LEFT: 137px; WIDTH: 70px; FONT-FAMILY: sans-
serif; POSITION: absolute; TOP:" & CStr(nCurrTop + 10) & "px' width='70' LANGUAGE=javascript
onclick='return fnCloseDialog(1)'>" & _
 "<INPUT id=btnCancel type=button value=Cancel name=btnCancel
style='BACKGROUND-COLOR:gainsboro;Z-INDEX: 101; LEFT: 215px; WIDTH: 70px; POSITION: absolute;
TOP:" & CStr(nCurrTop + 10) & "px' width='70' LANGUAGE=javascript onclick='return
fnCloseDialog(0)'>"

 ' pass the dynamically built content of the parameter dialog
 ' to the session variable
 Session("DlgContent") = sDlgOuterHTML
 Session("DlgHeight") = nCurrTop + 30
 Else
 ' if otherwise the parameters are given do not prompt the parameter dialog,
 ' simply pass these values to the global session variables
 Session("ShowParamsDialog") = 0
 End If
 End If
End If

This code essentially begins by checking if ReportEngine and Report session variables are defined and set to valid

objects. If the request action is “re-run” then the collection of parameters are retrieved via the GetParams() API

function of the ELSReport class. Otherwise, the old instance of the Report object is destroyed and a new instance is

created.

The next step is to define the connection string for the data access. In particular, if the DBIndex parameter is not

specified in the HREF attribute of the calling HTML anchor, then the ConnectString is defined by the ConnStr0

session variable evaluated in the Global.asa module. Otherwise, the proper ConnStrJ session value is used based

on the DBIndex parameter’s value, where (i.e. J = DBIndex). The resulting connection string value is then passed

to the ConnectEngine function, which briefly speaking, defines and opens the data access connection, and then

passes this connection to the report engine instance. Later on in this section, we will describe the details of the

ConnectEngine function. For now, we will continue the outline of the remaining steps of the main section of the

ReportViewer.asp ASP code.

The next step proceeds to define the sBaseAddr and sCabAddr. The later variable defines the path and filename of

the PhookCtl.CAB, which contains the Printer extension class. The download and installation of this printer class is

automated on demand via a Java script call, as we will see later on in the ReportViewer.asp code.

The process continues by calling the LoadReport function, which simply sets the ReportFilename property of the

ELSReport object instance defined by the Report session variable. Note that in the LoadReport function the

RepFile session parameter’s value is used to evaluate this ReportFilename property. A closer observation will also

reveal that along the filename of the REP-file, the value of the RepFile parameter must contain the relative

subdirectory path with the prefix “/” character (e.g. see the HREF attribute values of the HTML anchors in the

MainPage.htm file).

Given that loading the report file was successful, the process continues by evaluating the RepName session

variable, and then using the GetParams2 report engine API function retrieves the parameter options from the REP-

file into the ParamsObject session variable. Also, if the submit action is not “re-run” (i.e. not a re-run of the same

report) then the HREF’s ParamNames and ParamValues values are passed to the corresponding session variables.

The content of the ParamNames are parsed and split into the arrQueryStringParams array, which will be used to

check if any of the report parameters are explicitly specified in the anchor reference URI. Also, the Count property

of ELSParams2 object is called and passed to the ParamCount session variable, so that all the ingredients become

ready for iteration on the report’s parameter collection.

This iteration starts by setting the oParam object variable to the I-th item of the report parameter via the Item API

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 27

function. Then the process checks if the parameter is not explicitly specified in the URI of the MainPage.htm

HTML anchor for the current report. At this point, observe that the iteration contains calls to the following helper

functions:

 GetLabelOuterHtml to construct the DHTML code for the label control for the parameter.

Note that the label text is retrieved from the Prompt property of the

ELSParamOption object

 GetComboCtrlOuterHtm to construct the DHTML code for the combo-box control for the

parameter’s valid values, the content of the combo-box are constructed via

the GetOptionsString helper function.

 GetListCtrlOuterHtml to construct the DHTML code for the list-box control for the parameter’s

valid values, the content of the list-box are constructed via the

GetOptionsString helper function.

 GetCtrlOuterHtml to construct the DHTML code for other types of controls based on the data

type of the parameter (note that this includes the calendar control

implemented in Java script).

Therefore, the iteration dynamically constructs the controls for the report parameters, first constructing the label,

then based on the ArraySize and other properties of the parameter, branches into the following conditionals:

Case 1: In this case it is assumed that we have an array of independent parameters. For each of these parameters

the GetCtrlOuterHtml helper function is used to construct the DHTML code of the control.

Case 2: In this case it is assumed that we have a multi-valued parameter. Therefore a list-box must be used for the

valid values list display. The GetListCtrlOuterHtml helper function is used to construct the DHTM: code of the

control. Observe that in this case a height of 80 pixels is used for the height of this list-box control.

Case 3: In this case it is assumed that we have a parameter with valid values list. Therefore, a combo-box must be

used for the valid values list display, and the DHTML code is constructed via the GetComboCtrlOuterHtml helper

function.

Case 4: Finally, the remaining case is when the parameter requires a single control with no valid values list. For

this kind of single control, the GetCtrlOuterHtml helper function is used to construct the corresponding DHTML

code.

The logic at this point is as follows. If at least one report parameter is unspecified in the calling URI of the HTML

anchor for the report, then the parameter dialog should prompt for user input. Otherwise, the parameter values are

directly passed to the session variables and the ShowParamsDialog is set to 0, so that no parameter dialog is

prompt.

A glance at the details of the construction of parameter controls in the GetCtrlOuterHtml, GetListCtrlOuterHtml

and GetComboCtrlOuterHtml functions reveals the usage of the Prompt, AllowBlank, Nullable, DataType and

Value properties of the ELSParamOption object. Moreover, for parameters with valid values lists, we have utilized

the GetOptionsString function in the construction of the GetListCtrlOuterHtml and GetComboCtrlOuterHtml

functions. The following is a code listing of the GetOptionsString function:

Function GetOptionsString(collValidVals, collDefVals, nInx, bMulti)
 nOptionCount = 0
 nSelCount = 0
 ' get count of valid values
 If IsObject(collValidVals) Then
 nOptionCount = collValidVals.Count
 End If
 ' get count of default values
 If IsObject(collDefVals) Then
 nSelCount = collDefVals.Count
 End If
 Dim sResult
 ' loop over the valid values and possible default values constructing the lists
 For k = 0 To nOptionCount - 1
 bSelected = False
 Set oOption = collValidVals.Item(k)

Chapter 3

28 Copyright © 2003, 2004 by Epsilon-Logic Systems

 If Request.QueryString("Action") <> "re-run" Then
 If Not bMulti Then
 If oOption.Value = collDefVals.Item(0).Value Then
 bSelected = True
 End If
 Else
 For l = 0 To nSelCount - 1
 Set oSel = collDefVals.Item(l)
 If oOption.Value = oSel.Value Then
 bSelected = True
 Exit For
 End If
 Next
 End If
 ElseIf IsObject(oOldParams) Then
 If Not bMulti Then
 If oOption.Value = oOldParams.Item(nInx).Value(0) Then
 bSelected = True
 End If
 Else
 nSelCount = oOldParams.Item(nInx).ArraySize
 For b = 0 To nSelCount - 1
 If oOption.Value = oOldParams.Item(nInx).Value(b) Then
 bSelected = True
 Exit For
 End If
 Next
 End If
 End If
 If bSelected Then
 sResult = sResult & "<OPTION VALUE='" & oOption.Value & _
 "' SELECTED>" & oOption.Name
 Else
 sResult = sResult & "<OPTION VALUE='" & oOption.Value & _
 "'>" & oOption.Name
 End If
 Next
 GetOptionsString = sResult
End Function

We next cover the details of the ConnectEngine function, which has the following code listing:

Function ConnectEngine (sConnString)
 On Error Resume Next
 ConnectEngine = False

 If Session("EngineConnected") Then
 ConnectEngine = True
 Else
 ' create an instance of connection object
 Set Session("Conn") = server.CreateObject("ADODB.Connection")
 If Err.number <> 0 Then
 Response.Write "Failed to create ADODB Connection object on the server."
 Err.Clear
 Else
 If IsObject(Session("Conn")) Then
 ' open the connection
 Session("Conn").Open sConnString, "", "", adOpenUnspecified

 If Err.Number <> 0 Then
 Response.Write "Failed to find database on the server."
 Session.Abandon
 Else
 ' pass the connection object to the report engine
 If Session("Conn").State = adStateOpen Then
 Session("Conn").CursorLocation = adUseClient
 Session("ReportEngine").Connection = Session("Conn")
 ConnectEngine = True
 End if
 End If
 End If
 End If

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 29

 End If
End Function

At the end of the HTML <HEAD>-section, the Java script window_onload() function is executed on the onload event

of the script. This function calls the fnIsAXLoaded() function, which basically loads the phookctl.Print class. At

this point, if the Phookctl.CAB is not already downloaded and installed on the client machine, the process

automatically downloads and installs the CAB file. The rest of the code in the ReportViewer.asp contains print

settings, preview and other printer template related functions. These functions essentially call respective functions

of the installed Print class.

This completes the dynamic parameter dialog construction. Note that the ReportViewer.asp page has an HTML

part that consists of a frameset containing two HTML frames, respectively with SRC attribute values

“RGOutput.htm” and “RGController.asp”. In particular, the execution of the ReportViewer.asp page will in turn

execute the RGController.asp page, which we will consider next.

The loading of the RGController.asp page triggers the window_onload Java script function defined as follows:

function window_onload() {
 nCurrPage = 1;
 nPageCount = 1;

 frmParams.btnStop.disabled = true;

 frmParams.btnFirst.disabled = true;
 frmParams.btnPrev.disabled = true;
 frmParams.btnNext.disabled = true;
 frmParams.btnLast.disabled = true;
 frmParams.btnMPrintCancel.disabled = true;

 if(fnEnterParams())
 fnSubmitForm("run");
}

This function initializes variables and disables some buttons, and then calls the fnEnterParams function, which has

the following code:

function fnEnterParams()
{
 // check if the ShowParamsDialog session variable is true

sText = document.getElementById('ShowParamsDialog').innerText;
 var nShowDlg = parseInt(sText);
 if(nShowDlg == 1)
 {
 // get the value of the DlgHeight session variable
 sText = document.getElementById('paramdlgheight').innerText;
 var nDlgHeight = parseInt(sText);
 if(nDlgHeight > 0)
 {
 // get the value of the DlgContent session variable set in ReportViewer.asp
 var vArgs = new Array(2);
 vArgs[0] = document.getElementById('dlgContent').innerHTML;
 // compute the dialog height
 dlgHeight = Math.min(nDlgHeight + 50, 500);
 // call the ParametersDlg.htm page as a dialog, passing the DlgContent
 // via the vArgs array, and the calculated height via dlgHeight
 nResult = showModalDialog("ParametersDlg.htm", vArgs,
 "center=yes;help=no;dialogWidth='420px';status=no; dialogHeight='"
 + dlgHeight +"px'");
 if (nResult == 1)
 {
 // the dialog returns vArgs array with the parameter names and values,
 // these values are passed to hidden variables of frmParams form
 // (check the end of this file for the hidden variables)
 frmParams.ParamName.value = vArgs[0];
 frmParams.ParamValue.value = vArgs[1];
 }

Chapter 3

30 Copyright © 2003, 2004 by Epsilon-Logic Systems

 delete vArgs;
 return nResult == 1;
 }
 }
 return true;
}

This code essentially calls the ParametersDlg.htm as parameters dialog passing the dialog content already

constructed in the ReportViewer.asp. Note that when this parameters dialog is submitted, the vArgs array is

returned with vArgs[0] consisting of a sequence of the parameter label names separated by “;” character, and

similarly the vArgs[1] consisting of a sequence of entry values separated by “;” character. This parameter

information is passed to the hidden ParamName and ParamValue elements of the frmParams form. Incidentally,

the frmParams form is defined at the end of the RGController.asp file, and has an action attribute value of

“RepGen.asp”, hidden elements Action, ParamName and ParamValue, and several toolbar buttons with command

functions described next.

Figure 3.6.Figure 3.6.Figure 3.6.Figure 3.6. Showing the web toolbar buttons of the RGController.asp page

Figure 3.6 shows the frmParams form’s buttons that are displayed at the bottom of the report viewer page. These

buttons are defined in the HTML <BODY>-section of the RGController.asp page via <INPUT> elements (look at the

end of the file for more details). The following table lists these buttons from left to right along with their

corresponding functionality:

Button Name Called Function Action Description

btnRun btnRun_onclick This command will re-run the report

btnStop btnStop_onclick This command will attempt to halt an active report generation
process

btnFirst btnFirst_onclick This command will display the first page of the generated report
output in the report viewer

btnPrev btnPrev_onclick This command will display the previous page of the generated
report output in the report viewer

btnNext btnNext_onclick This command will display the next page of the generated report
output in the report viewer

btnLast btnLast_onclick This command will display the last page of the generated report
output in the report viewer

btnPreview btnPreview_onclick This command will print preview the current page of the
generated report output

btnPrint1 btnPrint1_onclick This command will print the current page of the generated report
output

btnMPrint btnMPrint_onclick This command will call the Print dialog to print a range of the
pages from the generated report output

btnMPrintCancel btnMPrintCancel_onclick This command will cancel an active print process

btnSaveAs btnSaveAs_onclick This command will download the whole report output as a single
HTML document and display it in a new IE browser window to be
saved or exported on the client machine

btnMainWindow btnMainWindow_onclick This command will navigate back to the MainPage.htm page

Getting back to our outline of the RGController.asp module, observe that once the parameter dialog is submitted,

the fnSubmitForm function is called displaying status message via cookies and passing argument “Run” via hidden

Action variable to the RepGen.asp ASP page. Therefore, we will describe next the processes involved in the

RepGen.asp module, and then get back to the RGController.asp module to outline more details about the various

button commands.

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 31

The following code contains the main APS processes of the RepGen.asp ASP page:

On Error Resume Next

' if the action is the initial execution of a report or the re-run via the Run button
' of the report viewer page, then initialize the report and call the GenerateReport function
If Request.Form("Action") = "run" Or Request.Form("Action") = "re-run" Then
 If Request.Form("Action") = "re-run" Then
 Response.Redirect "ReportViewer.asp?RepFile=" & Session("RepName") & "&Action=re-run"
 End If
 ' initialize and prepare the report
 Session("ReportInitialized") = InitReportInfo
 If Session("ReportInitialized") Then
 ' generate the report output
 GenerateReport
 End If
ElseIf Request.Form("Action") = "stop" And Session("InGeneration") = 1 Then
 ' if a generation process is active then call the Stop API
 Session("ReportEngine").Stop
 Response.Write "Report generation is terminated by user request."
Else
 Select Case Request.Form("Action")
 Case "first"
 Session("CurrPage") = 1
 Case "prev"
 If Session("CurrPage") > 1 Then
 Session("CurrPage") = Session("CurrPage") - 1
 End If
 Case "next"
 If Session("CurrPage") < Session("PageCount") Then
 Session("CurrPage") = Session("CurrPage") + 1
 End If
 Case "last"
 Session("CurrPage") = Session("PageCount")
 End Select
 ' get respective page content and pass as response along with print settings info
 sContent = Session("ReportEngine").GetPageContent(Session("CurrPage"))
 If Err.Number <> 0 Then
 Response.Write "Failed to obtain the " & Session("CurrPage") & " page of report."
 Err.Clear
 Else
 Response.Write sContent
 Response.Write GetPrintSettings()
 End If
End If

The RepGen.asp page starts with checking the request form’s Action value. If this value is either a “run” or “re-

run”, then it proceeds to the actual generation of the report output. Recall that the “re-run” Action value occurs

when the user in the report viewer (most probably after a report generation) clicks on the Run button. Otherwise,

the currently selected report is being generated the first time from the MainPage.htm URI link. In this case, first,

the report is initialized by resetting session variables and evaluating the parameters of the report via the helper

function InitReportInfo, and then the report generation is triggered via the GenerateReport function. We will

consider next the details of these two helper functions.

First, we will look at what goes on in the InitReportInfo function, which has the following code listing:

Function InitReportInfo
 If Session("ParamCount") > 0 Then
 ' split report parameter names specified in the QueryString
 Dim arrQueryStringParamNames
 arrQueryStringParamNames = Split(Session("ParamNames"), ";", -1, 1)
 ' split report parameter values specified in the QueryString
 Dim arrQueryStringParamValues
 arrQueryStringParamValues = Split(Session("ParamValues"), ";", -1, 1)
 ' get the values of the remaining parameters specified in Parameters dialog
 Dim arrDlgParamValues
 arrDlgParamValues = Split(Request.Form("ParamValue"), ";", -1, 1)
 ' define offset to take account for the case of parameter arrays
 ' among the parameters shown in the dialog

Chapter 3

32 Copyright © 2003, 2004 by Epsilon-Logic Systems

 offsCtlArr = 0
 ' count of parameters already specified through QueryString
 nQSSpecifiedCount = 0
 ' set report parameter values
 For I = 0 To Session("ParamCount") - 1
 Set oParam = Session("ParamsObject").Item(I)
 nValueArrSize = oParam.ArraySize
 bSuccess = true
 nInx = GetQueryStringParamIndex(oParam, arrQueryStringParamNames)
 If nInx >= 0 Then
 ' the value is specified in the QueryString
 If UBound(arrQueryStringParamValues) >= nInx Then
 'the corresponding value exists
 bSuccess = SetParameterValue(oParam, arrQueryStringParamValues(nInx), 0)
 End If
 nQSSpecifiedCount = nQSSpecifiedCount + 1
 Else
 ' the value is specified through the parameters dialog
 If nValueArrSize > 1 And IsNull(oParam.ValidValues) Then
 ' array parameter in the parameters dialog
 For F = 0 To nValueArrSize - 1
 If F > 0 Then
 offsCtlArr = offsCtlArr + 1
 End If
 bSuccess = SetParameterValue(oParam,
 arrDlgParamValues(I + offsCtlArr - nQSSpecifiedCount), F)
 If Err.Number <> 0 Then
 Response.Write "Failed to set " & oParam.Ptompt & _
 " parameter value." & vbCrLf & Err.Description
 Err.Clear
 InitReportInfo = False
 Exit Function
 End If
 Next
 Else
 bSuccess = SetParameterValue(oParam,
 arrDlgParamValues(I + offsCtlArr - nQSSpecifiedCount), 0)
 End If
 End If
 If Not bSuccess Then
 InitReportInfo = False
 Exit Function
 End If
 Next
 End If
 ' find and pass the target browsers URL via the SetBaseURLPath API function of report engine
 sBaseAddr = "http://" & Request.ServerVariables("SERVER_NAME") & _
 Request.ServerVariables("PATH_INFO")
 ' pass the base URL for multi-page print support via the SetBaseMPrintSupportURL API
 Session("ReportEngine").SetBaseMPrintSupportURL Left(sBaseAddr,
 InStrRev(sBaseAddr, "/", -1, 1)) & "BIN/"
 sRepPath = Session("RepName")
 sRepPath = Left(sRepPath, InStrRev(sRepPath, "/", -1, 1))
 sBaseAddr = Left(sBaseAddr,InStrRev(sBaseAddr, "/", -1, 1)) & sRepPath

 Session("ReportEngine").SetBaseURLPath sBaseAddr
 InitReportInfo = True
End Function

This function essentially begins by parsing and evaluating the parameters passed from the MainPage.htm page, as

well as the parameters from the parameters dialog. Special consideration is given to array parameters coming from

multi-valued report parameters. Then the printer template base URL and the report’s dependencies base URL are

constructed and passed to the report engine via the SetBaseMPrintSupportURL and SetBaseURLPath API

functions.

Next, we will look at the GenerateReport function, which has the following code listing:

Sub GenerateReport
 On Error Resume next
 Session("InGeneration") = 1
 lRes = -1

SCRIPT Engine

Copyright © 2003, 2004 by Epsilon-Logic Systems 33

 Session("PageCount") = 1

 ' call GenerateReport API of the report engine passing the report object as argument
 lRes = Session("ReportEngine").GenerateReport(Session("Report"), ELS_HIDE)
 If lRes < 0 Then
 Response.Write "Generation Error: " & Err.Description
 Err.Clear
 Session.Abandon
 Exit Sub
 End If
 Session("InGeneration") = 0
 Response.Cookies("PageCount") = lRes
 Session("PageCount") = lRes
 ' after successful generation get the content of the first page of the output
 ' via the GetPageContent API function of the report engine
 If lRes = 1 Then
 sContent = Session("ReportEngine").GetOutput
 Else
 sContent = Session("ReportEngine").GetPageContent(1)
 End If
 If Err.Number <> 0 Then
 Response.Write "Failed to obtain the fisrt page of " & _
 Session("Report").ReportFileName & "."
 Err.Clear
 Else
 Session("CurrPage") = 1
 ' return the content of the output page to the web browser
 ' also return the default print settings of the report hidden in a <DIV>-element
 Response.Write sContent
 Response.Write GetPrintSettings()
 End If
End Sub

The GenerateReport subroutine essentially starts with initializing some variables then calls the GenerateReport

API function of the report engine passing the Report object as an argument. After successful generation of the

report output, the first page is retrieved via the GetPageContent API function returning the content of the page as

response along with the printer settings information via a hidden <DIV>-element.

We are ready now to get back to the RGController.asp and outline the details of the button commands of the

frmParams form.

First, note that the btnRun and btnStop command buttons will trigger the RegGen.asp execution with Action values

respectively “re-run” and “stop”. The re-run action will restart the ReportViewer.asp call with the additional

Action parameter, which will essentially maintain the old parameter information and repeat all the report processes

that we have outlined so far. The stop action on the other hand, will halt any active report generation process.

The next four buttons btnFirst, btnPrev, btnNext and btnLast, will result into RegGen.asp execution with

respective Action values “first”, “prev”, “next” and “last”. This will call on the GetPageContent API function

of the report engine to display the respective pages of the report output in the report viewer frame.

The btnPreview and btnPrint1 buttons respectively call the fnPreview_onclick and fnPrint1_onclick functions.

These functions in turn call the fnPrintPreview and fnPrintOnePage functions of the ReportViewer.asp, which in

turn call the PrintPreview and PrintCurrPage functions of the Print class (assuming that the PHookCtl.dll was

automatically installed via the Phookctl.CAB file).

The btnSaveAs button will simple open a new instance of the IE browser activating the SaveOutput.asp page, with

the query string “SaveOutput.asp?nPrint=1”. The entire ASP code of the SaveOutput.asp page is listed below:

If IsObject(Session("ReportEngine")) Then
 nPrint = Request.QueryString("nPrint")
 If nPrint = 1 Then
 lRres = Session("ReportEngine").SendOutputHTTP(Response, , , 1)
 If lRes < 1 Then
 Response.Write "SendOutputHTTP returns: " & lRes
 End If
 ElseIf nPrint = 2 Then
 Session("ReportEngine").SendOutputHTTP Response,

Chapter 3

34 Copyright © 2003, 2004 by Epsilon-Logic Systems

 Request.QueryString("nStart"), Request.QueryString("nEnd"), 2
 End If
End If

In particular, since in this case the nPrint is equal to 1, the SendOutputHTTP API function is called with lReserved

argument set to 1. This indicates that the whole report output must be downloaded to the client side, using the

HTTP 1.1 compression protocol.

Finally, the btnMPrint will essentially call the print dialog, so that the user may select a range of pages from the

report output to be printed on the client side. The details of this command, as well as that of the btnMPrintCancel

command will be described in the technical article with the “Affordable Web Reporting Solution: Part II” title.

