Epsilon-Logic Systems

ELS-QB®

User’s Guide

ELS-QB® User’s Guide

Revision: 2.50, updated on April 15, 2004
2001-2004 (Epsilon-Logic Systems

http://www.epsilon-logic.net

e-mail: support@epsilon-logic.net
Table of Contents

	Introduction
	1

	The ELS-QB GUI
	2

	Creating a Database Connection
	8

	The Data Browser
	11

	Creating and Saving a Query
	11

	Defining Relations and Joins
	12

	Selecting Fields and Defining Criteria
	13

	Using SQL functions
	15

	Defining SQL Manually
	22

	Running the Query and the Result tab
	22

	Exporting / Printing
	23

	Storage and File Processing Support
	24

	Transferring Data Between Connections
	25

	INSERT, UPDATE, DELETE Queries
	26

	Visual Basic Programmer’s Reference
	29

	Visual C++ Programmer’s Reference
	57

Introduction

The ELS-QB® is a visual interface used for the creation of complex queries in much the same manner as MS-Access query design interface.
The ELS-QB® visual interface essentially consists of the following five panes:
· Connections pane, in which the user defines or manipulates database connections,

· DB Browser pane, which displays the database objects for the currently active database connection in the Connections pane,

· Relations pane, in which relations and joins are defined for selected database objects,

· Columns pane, in which the user selects fields and defines criteria, as well as grouping and sorting,

· SQL pane, in which the finalized SQL command is displayed or directly entered.

With the Connections pane the user can create database connections for various types of database engines including MS-SQL Server, MS-Access, Oracle, DB2, as well as, for other ODBC complaint OLE DB providers. Using the DB Browser pane one may display the database objects, such as tables, views and stored-procedures, for any connection defined in the Connections pane. The user may drag-drop objects from the DB Browser pane into the Relations pane, in which relations or joins between objects may be defined. In the Columns pane the user may define fields or expressions using the Columns functions toolbar. In addition, criteria, grouping and sorting may be defined via this Columns pane. All these operations together construct the SQL statement displayed in the SQL pane. Moreover, the SQL pane is an advance editor comparable with the Visual C++ editor with color syntax, edit operations, find/replace and advance selection features. In this editor the user may manually enter the SQL statement, which upon update will synchronize the other panes. At the end the user may verify and run the query, and the result will be displayed in the Result tab-view of the query builder. Both the SQL pane and the grid in the Result tab-view have export and print support, so that the user may export the content to MS-Office applications (or simply print this content).

The ELS-QB® component has integrated ADO data access mechanisms, so that the user may dynamically create any database connection, using the Connection Manager interface integrated in the Connections pane. Each query builder instance (or session window) may have its own associated storage location, a directory in which all the connection binary files for the instance are created. Each connection created in the Connections pane has a different such binary file, in which all the queries under that connection are stored. All file-processing mechanisms are built-in into the ELS-QB® component.

The ELS-QB® GUI

The ELS-QB® has an integrated GUI, which simplifies considerably the creation of complex queries assuming only beginner’s background in SQL language. For example, the user may use the proper SQL function via the Columns function combo-buttons, even if she/he never used it before. In this way the novice user may generate a complex query without referring to books or help files about the SQL syntax for the desired database engine.

[image: image1.jpg]Figure 1.1. Showing the ELS-QB GUI at run-time

This integrated GUI is displayed in Figure 1.1, which is a snapshot of the Visual C++ version of the sample application provided with the ELS-QB® package.

[image: image2.png]
Figure 1.2. Connection pane
Essentially, the user begins with the query builder using the Connections pane (see the top-right corner of the screen in Figure 1.1, or see Figure 1.2). This Connections pane is used to define connections to various databases on which queries may be defined. A connection is displayed in the Connections pane as connection node under the Databases root node.

	Each connection node will contain all the queries created for that connection. To operate on the Connections pane, the user may use the popup menu commands accessible via the right-mouse button click combination over the desired node of the tree in the pane. The menu items of this popup menu are interpreted depending on the context of the particular node on which the user clicks. For example, the New menu item will mean new connection when the user right-mouse button clicked over the Database root node. While when the click is applied on a connection, then the New menu item will be interpreted as new query for that connection.
	[image: image3.jpg]Figure 1.3. Popup menu

We list next the interpretations of these menu items:

	New...
	This menu item is interpreted as new connection when the right-mouse button click is applied on the Databases root node, while on any connection node it must be interpreted as new query. Anywhere else it will be disabled.

	Open
	This menu item is interpreted as expanding the tree when the right-mouse button click is applied on the Databases or any connection node, while on queries it must simply open the query into the query builder closing the currently open query. The alternative to this command is via the left-mouse button double-click method on the any selected node.

	Rename
	This menu item simply makes the node label editable so that the user may modify the name of selected connection or query.

	Properties...
	This menu item only applies to connections and will display the connection properties in the Data Link Properties dialog. This dialog is used to modify the database connection properties.

	Remove
	This menu item will remove the selected node on which the menu command is applied.

	Copy
	This menu item together with Paste menu item is used for duplicating an existing query. The user first applies the Copy command on selected query and then using the connection node applies the Paste command. This will paste a copy of the query with the name prefixed by “Copy_of_”.

	Paste
	(see the Copy menu item).

Opening a connection either via the Open menu item or double-clicking on the connection node will update the DB Browser pane displaying the tables, views and stored-procedures in the database corresponding to that connection (see bottom-right corner of the screen in Figure 1.1 or see Figure 1.4).

	[image: image4.png]
Figure 1.4. DB Browser pane
	The DB Browser pane is utilized for viewing the database objects of the currently active connection, and more importantly to drag-drop such objects into the Relations pane.

Essentially, this pane will display the currently open database with static folders Tables, Views, Procedures and Functions respectively containing all the existing tables, views, stored-procedures and functions in that database. These objects being nodes in respective Tables, Views, Procedures and Functions folders will have their field or parameter structures as child-nodes.

At this point, we should observe that the Connections pane is used to open a database connection and with the help of the DB Browser pane to view the content of that database. Moreover, for the currently active database we may use the Connections pane to open or create a particular query, in which case this query will be displayed via the Relations, Columns and SQL panes. Observe also that only one query may be opened or viewed at a time, and that the query builder has some sort of SDI (Single Document Interface) user-interface.

More precisely, for each project instance of the ELS-QB® query builder, the GUI behaves in SDI manner. However, a programmer may use the ELS-QB® component in a way so that each ELS-QB® instance may be controlled by some MDI application, with the MDI child windows being query builder projects (see the sample applications for an example).

As we have stated that essentially a query is displayed via the Relations, Columns and SQL panes, which are contained in the Query tab of the query builder screen (see Figure 1.1 for details). The visibility of the panes of the query builder interface may be toggled, so that the user may hide any of the five panes to maximize the appearance of the other panes.

	This toggling of the panes may be controlled via the first five toggle buttons of the toolbar (see Figure 1.5.). In addition to these toggle buttons the toolbar contains the Check SQL Syntax, Execute and Stop buttons. The Execute and Stop buttons work together, so that the Stop button is enabled only when a query execution is in progress.
	[image: image5.png]Figure1.5. Showing the toolbar buttons

The Check SQL Syntax button will check the syntax of the SQL statement in the SQL pane against the backend database engine.

When a query is executed via the Execute button the result of the query is displayed in the grid of the Result tab.

[image: image6.png]
Figure 1.6. Showing the Relations pane
We describe next the Relations, Columns and SQL panes, which work together to assist the user in creating queries (see Figure 1.1 for details). The Relations pane is used to visually add table or view objects to the query by simply dragging from the DB Browser pane and dropping them into the Relations pane (see Figure 1.6 for details). Once such objects are in the Relations pane, the user may relate fields between objects via drag-drop method. In addition, to the relation or join line being drawn when fields are related, the user may use the right-mouse button clicking on the join line node. This will display the popup menu with the following menu items:

	Remove
	This menu item will remove the selected relation or join line from the Relations pane,

	Select All Rows from <object_name>
	This menu item will define the join type (i.e. INNER or OUTER) by selecting all rows from the left side of the join line,

	Select All Rows from <object_name>
	This menu item will define the join type by selecting all rows from the right side of the join line,

	Properties...
	This menu item will display the Join Line Properties dialog for further specifics about the relation (see Figure 1.7 for more details),

Note that the Select All Rows from <object_name> are toggle menu items, where the object_name is the name of the object at the respective start or end of the join line. The first menu item from these Select All Rows from <object_name> menu items defines the join to be LEFT OUTER JOIN if checked, while the second will make the join to be RIGHT OUTER JOIN. If both are checked then the join is FULL OUTER JOIN. If neither of these menu items is checked then the join becomes INNER JOIN.

	[image: image7.png]
Figure 1.7. Showing the Join Line Properties dialog
	The Join Line Properties dialog may be used for further specifics about the join relation. For example, defining the operator between the related fields, as well as the join type (i.e. INNER, OUTER, LEFT, RIGHT or FULL).

The following are all possible operators between related fields:

{ =, <>, <, <=, >, >= }.

The default operator is the equality operator, in which case the diamond node of the join line does not show the operator symbol. In all other cases the operator symbol will be shown in this diamond node.

The Columns pane is responsible for many factors involved in the creation of queries via such visual interface (see Figure 1.8 for more details). Some of these factors are as follows:

· Selecting fields in the SQL statement,

· Selecting field-columns, on which SQL functions may be applied,

· Defining query criteria, sorting and grouping on fields easily accessible via combo-box controls,

as well as other factors, which together with the Relations and SQL pane simplifies the creation of complex queries.

[image: image8.png]
Figure 1.8. Showing the Columns pane with the SQL functions toolbar
The SQL functions toolbar contains all SQL functions necessary to perform advance queries. This toolbar is an indispensable tool for novice users that frequently need SQL language books or help files to write SQL commands. Furthermore, this tool universalizes the SQL language so that users may create advance queries in Oracle, even if they only know MS-Access or MS-SQL Server (or vise versa). Essentially the SQL functions are categorized into buttons, with each button being a combo-box listing related SQL functions (see Figure 1.9). We list next these combo-box buttons in the order from left to right:

· Functions for concatenation of fields into string,

· Functions for masking concatenated fields,

· Aggregate functions including: AVG, COUNT, MAX, MIN, SUM, STDEV, VAR,

· String functions including: CHARINDEX, DIFFERENCE, LEFT, LEN, LOWER, LTRIM, PATINDEX, REPLACE, QUOTENAME, REPLICATE, LEFTPAD, RIGHTPAD, REVERSE, RIGHT, RTRIM, SOUNDEX, SPACE, STR, STUFF, SUBSTR, TRIM, UPPER,

· Numeric functions including: ABS, CEILING, FLOOR, ROUND, TRUNCATE, SIGN,

· Date part functions including: YEAR, QUARTER, MONTH, DAYOFYEAR, DAY, WEEK, WEEKDAY, HOUR, MINUTE, SECOND, MILLISECOND,

· Date name functions including: YEAR, QUARTER, MONTH, DAYOFYEAR, DAY, WEEK, WEEKDAY, HOUR, MINUTE, SECOND, MILLISECOND,

· Conversion to char functions,

· Conversion to number functions,

· Conversion to date functions,

· Null case function,

· Simple case function,

[image: image9.png]
Figure 1.9. Showing the concatenation to string options of the SQL functions toolbar
The SQL pane is by itself a complete and fully syntax colored editor, with cut, copy, paste, find, replace, multiple do/undo and other operations (see Figure 1.10). The actions performed in the Relations and Columns panes affect the content of the SQL pane producing an SQL statement, which eventually may be executed against the database defined by the currently active database connection.

Using the SQL functions toolbar the user may also insert SQL functions with arguments taken from the currently selected field-columns in the Columns pane. These actions will simply insert string segments into the SQL pane at the current location of the cursor, comprising of the desired SQL function syntax with the selected field names as arguments.

The user may enter SQL commands directly into the SQL pane without the use of the other panes, in which case the user needs to synchronize all panes via the Check SQL Syntax toolbar button.

[image: image10.png]
Figure 1.10. Showing the SQL pane with syntax coloring
Creating a Database Connection

In this section we will describe how to define or modify a database connection for any database for which an OLE DB provider is properly installed on the user’s system. In general, the method of database connection will depend on the backend database engine and their respective supported OLE DB providers.

Using the popup menu on the Databases root-node of the Connections pane, we select the New menu item. This will open the New Database Connection dialog (see Figure 1.11 for more details).

	[image: image11.png]
Figure 1.11. Showing the New Database Connection dialog
	The user must then select a data access method using one of the items in the Data Access Type list-box. And enter a name for the connection in the Connection Name text-box.

When the user OK-s this dialog, depending on the data access type selected, different types of data access dialogs may prompt.

In general, the Data Access Type options are as follows:

· OLE DB Dynamic Data Access using ADO, which will prompt the Data Link Properties dialog for an OLE DB provider and further properties about the data source (see Figure 1.12),

· OLE DB UDL Link-file using ADO, which will prompt the Select Data Link File dialog for the user to specify the location and name of an existing UDL data link file (see Figure 1.13),

· ODBC Machine Data Source using DSN, which will prompt the Select Data Source dialog with the Machine Data Source tab active, for the user to select an ODBC machine data source name (see Figure 1.14),

· ODBC File Data Source using DAO, which will prompt the Select Data Source dialog with the File Data Source tab active, for the user to select a data source file (see Figure 1.14).

	[image: image12.png]
Figure 1.12. Showing the Data Link Properties dialog
	In the case of OLE DB Dynamic Data Access via ADO, the user is prompt with the Data Link Properties dialog to select the OLE DB Provider from the Provider tab, as shown in Figure 1.12 on the left.

For example, for MS-SQL Server the user must select the Microsoft OLE DB Provider for SQL Server item from the list or providers. For Oracle the best option is the native Oracle Provider for OLE DB. For MS-Access one may use the Microsoft Jet 4.0 OLE DB Provider, while for all other ODBC complaint databases the Microsoft OLE DB Provider for ODBC may be used.

After selecting a proper OLE DB Provider, the user may click the Next>> button which will switch the tab to Connection, to enter more details about the connection, such as: data source name / location of data / server name, server logon information, initial catalog or database name.

	In the case of OLE DB UDL Link-file using ADO, it is assumed that the user wants to use an already existing UDL-file (Universal Data Link), which stores the connection information. Therefore using the Select Data Link File dialog the user may locate and open the UDL-file (see Figure 1.13 on the right).

Note that once the connection is defined in the Connections pane, the connection information is transferred from this UDL-file into the project directory for the current instance of the query builder.
	[image: image13.png]
Figure 1.13. Showing the Select Data Link File dialog

For the options using ODBC through a machine data source name or data source file, the user is prompt with the Select Data Source dialog (see Figure 1.14).

	[image: image14.png]
Figure 1.14. Showing the Select Data Source dialog
	In the Select Data Source dialog the user may select an existing machine DSN or data source file, respectively from the Machine Data Source or File Data Source tabs.

Note these ODBC data access options may be used when the backend data source does not support any adequate OLE DB Provider. In general, we recommend the use of the OLE DB Dynamic Data Access or OLE DB UDL Link-file options utilizing ADO.

In all cases when the connection information is specified and the dialogs submitted, a new connection node is added to the Databases root-node.

To modify an existing connection node the user may use the Properties menu item from the popup menu obtained via the right-mouse button click method on the selected node itself. This will display the connection information dialog corresponding to the data source and data access type for the selected connection node, with which the user may modify the data source name / location of data / server name, server logon information, initial catalog or database name.

The Data Browser

The DB Browser pane is used for displaying the database table, view, stored-procedure and function objects of the currently active connection (see Figure 1.4). To display a particular connection’s objects in the DB Browser, the user may double-click on that connection’s node in the Connections pane. This will update (or refresh) the DB Browser displaying the database object structure.

Essentially, there are the Tables, Views, Procedures and Functions folders under the database root folder in the DB Browser pane. The Tables folder will contain the table objects of the database, with each table object node containing the fields as child nodes. Similarly, the Views folder will contain the view objects of the database, with each view object node containing the fields as child node. These objects may be drag-dropped into the Relations pane, where further field relation manipulations may be performed.

The Procedures folder will contain the stored procedures of the database, with each stored procedure object node containing the arguments and return data types as child nodes. These stored procedures may not be drag-dropped into the Relations pane, and they preliminarily serve the user to display structural information about the stored procedure.

In addition to the structural information about the fields and arguments of the objects displayed in the DB Browser, we can also obtain detailed information about these objects via the Get Details menu item of the popup menu on the DB Browser pane. In fact, the Get Details command will display the database script via a textbox window for any selected object in the DB Browser pane. This Get Details function makes the DB Browser a very powerful data view tool generating object scripts much more quickly and efficiently than, for example, the MS-SQL Server script generator.

Creating and Saving a Query

To create a new query for a particular connection one may use the New menu item from the popup menu (see Figure 1.3), with the right-mouse button click on that connection node. This will create a query child node under this connection node, and will open this new query into the query builder panes. By default any new query has the name “New Query”, which may be modified by a second left-mouse click on the query node making the node label editable.

The user may open an existing query into the query builder by double-clicking on the node corresponding to that query. Only one query may be open for edit at the same time (i.e. similar to SDI documents).

Alternatively, the user may create a new query based on an existing query by simply copying the existing query via the Copy menu item of the right-mouse popup menu, and then using the Paste menu item of this same popup menu triggered on the connection node, the user may paste a copy of the existing query with the name prefixed by “Copy_of_” string.

To save modifications to a query the user may use the Save Query menu item under the File menu. This will store the query changes in the binary file for the connection, over which the query is defined. Note that each connection has a different binary file with the name derived from the name of the connection node, for example: if the connection node name is MyConn, the binary filename will be MyConn.con. In general, the file extension CON will be used for connection binary files.

Defining Relations and Joins

The Relations pane is used to relate similar fields between table, view or table-valued function objects (see Figure 1.6 for more details). Essentially, objects are drag-dropped from the DB Browser pane into the Relations pane, where they are displayed as lists of fields with check-boxes. Fields between a pair from these objects in the Relations pane may be related via drag-drop method, in this way, defining a relation or a join between them.

When a join is defined via drag-drop between two objects in the Relations pane, a join line is drawn with a diamond at the middle. Moreover the proper segment of the command is inserted into the SQL pane in the FROM-clause of the SQL command. In the case, when the related fields have an enforced constraint relation between foreign key and primary key, this line will have respectively the infinity and key icons at the endpoints. Otherwise there will be no icons at the endpoints of the join line.

As we have seen in Figure 1.7, that the user may use the right-mouse click on the diamond icon of the join to popup the menu, from which selecting the Properties menu item, the Join Line Properties dialog may be displayed. Observe that if in this dialog the join operator is selected to be other than the equality symbol, then this operator will be shown in the diamond icon. Moreover, the join type is defined via the Include rows section of the dialog, as a result of which the diamond shape is complemented with brackets on the left or the right side.

	[image: image15.png]
Figure 1.15. Showing the diamond shape and brackets for join types
	For example, see Figure 1.15, which shows the join lines for INNER, LEFT OUTER, and RIGHT OUTER join types.

The join type may be also selected via the Select All Rows from menu items of the popup menu (triggered over the diamond).

Sometimes when the user enters join conditions via the SQL pane directly, there may be situations when this join condition will have an expression instead of a field on one side of the equation (or inequality). In these cases the join line is drawn from a field of one object to the title bar of the other object in the Relations pane (corresponding to the expression), with the diamond icon having the “f*” label. Similarly, if both sides of the join condition equation contain expressions rather than simple fields, then the join line is drawn between the title bars of the objects.

In addition to tables and views that are drag-dropped into the Relations pane from the DB Browser pane, the Relations pane may also contain nested SELECT-statements that are entered directly as segments of the FROM-clause of the SQL command in the SQL pane. For example, the following SQL command entered directly into the SQL pane will result into two objects:

SELECT *

FROM

orders INNER JOIN (SELECT * FROM customers) AS cust

ON orders.customer_id = cust.customer_id

namely, orders and cust objects, where the field listing of cust object will be the field structure of the customers table. Note that all nested SELECT-statements must have object aliases. Moreover, if object alias is furnished then the corresponding object name in the Relations pane will be this alias name, otherwise the actual object’s name is used.

Finally, the Relations pane may be used to select fields from the objects by simply checking the check-boxes corresponding to these field items.

Selecting Fields and Defining Criteria

The Columns pane consists of the field columns grid and the SQL function toolbar sections (see Figure 1.8 for details). The field columns grid consists of the following columns:

	Column
	This grid-column is a combo-box control (with edit-box style), which initially contains a combined list of all field names derived from all the objects in the Relations pane.

	Alias
	This grid-column is an edit-box control, and is used for optional alias name entry for the content of the Column grid-column (by default it is empty).

	Object
	This grid-column is a combo-box control (with edit-box style), which initially contains a list of the names of all objects in the Relations pane.

	Object Alias
	This grid-column is an edit-box control, and is used for optional object alias name entry for the content of the Object grid-column (by default it is empty).

	Output
	This grid-column is a check-box control, and is used to indicate whether the field is to be outputted or not.

	Sort Type
	This grid-column is a combo-box control containing the choices Ascending, Descending and No-Sort.

	Sort Order
	This grid-column is a combo-box control containing the possible order choices depending on the currently selected sort fields. For example, if we have 3 sort fields selected, then the choices will be 1, 2, 3, and No-Sort.

	Group By
	This grid-column is a check-box control, and is used to indicate whether the field is used as aggregate.

	Criteria
	This grid-control is an edit-box control, and is used to enter criteria for the query.

	Or...
	This grid-control is an edit-box control, and is used to enter criteria for the query.

Note that for a new field-row in the Columns pane, initially the Column combo-box lists a combined list of all field names derived from all the objects in the Relations pane, but if the Object grid-column is specified this list will be restricted to only the field names of the selected object. Similarly, the Object combo-box initially lists the object names of all objects in the Relations pane, but when the Column grid-column is not empty, only object names that have this Column value as a field name will be listed. For combo-box controls in the Columns pane, to drop-down the combo-box list use either the left-button mouse click method or alternatively the Alt+down-arrow key combination.

The Columns pane is mainly used to define criteria for the currently open query. In the most standard situation the user may define query criteria by selecting a field from the Column grid-column, and then entering some value under the Criteria grid-column. This value may be preceded with one of the following operators =, <, >, <=, >=, !<, !>, !=, <>, IS, IS NOT, NOT, IN, LIKE, and BETWEEN. Note that the default operator is ‘=’, so that if the user does not specify an operator the equality is assumed.

Observe that when the user specifies criteria via direct entry into the WHERE-clause of the SQL statement in the SQL pane, some of the conditions may be considered expressions and may entirely be put under the Column grid-column. This is specially the case when a criteria condition cannot be represented in the following standard form:

<field_name> <operator> <value>

Also, note that any thing following the LIKE operator will be automatically put inside quotes (if it is not already inside quotes). The syntax of the LIKE-expression, which may be any regular expression, depends on the back-end database engine. For example, in the case of the MS-SQL Server the syntax is outlined below:

	Wildcard character
	Description
	Example

	%
	Any string of zero or more characters.
	WHERE lastname LIKE ‘Har%’

will include all last names which start with “Har”, for example Harry, Harold, etc.

	_ (underscore)
	Any single character.
	WHERE lastname LIKE ‘H_r_ld’

will include all last names which start with “H” and end with “ld”, with three middle characters separated with an “r”, for example Herald, Harold, etc.

	[]
	Any single character within the specified range ([a-f]) or set ([abcdef]).
	WHERE lastname LIKE ‘H[ae]rald’

will include all last names which start with “H” and end with “rald”, with one character in the set {a, e}, for example Herald, Harald, etc.

	[^]
	Any single character not within the specified range ([^a-f]) or set ([^abcdef]).
	WHERE lastname LIKE ‘H[^a]rald’

will include all last names which start with “H” and end with “rald”, with one character between them that is not an “a”, for example Herald, Hyrald, but not Harald.

We illustrate next the usage of the grid in the Columns pane. Essentially, the vertical direction represents conjunction (i.e. AND), while the horizontal direction represents disjunction (i.e. OR). For example, if we want to query all the contact names of the customers whose last names start with “John” and first name is “Ben”, or whose last name is “Benjamin” and the first name starts with “Frank”, then we may enter the following entries in the cells of the Columns grid:

	Column
	Criteria
	Or…
	Or…

	last_name
	LIKE ‘John%’
	= ‘Benjamin’
	

	first_name
	= ‘Ben’
	LIKE ‘Frank%’
	

	
	
	
	

which results into the following WHERE-clause in the SQL pane:

WHERE (last_name LIKE ‘John%’ AND first_name = ‘Ben’)

OR (last_name = ‘Benjamin’ AND first_name LIKE ‘Frank%’)
Observe that we may include several disjunctions under one Criteria/Or… grid-cell. For example, the following WHERE-clause

WHERE ((last_name LIKE ‘John%’ OR last_name LIKE ‘Jon%’)

AND first_name = ‘Ben’)

OR (last_name = ‘Benjamin’ AND first_name LIKE ‘Frank%’)
may be represented in the following way:

	Column
	Criteria
	Or…
	Or…

	last_name
	LIKE (‘John%’ OR ‘Jon%’)
	= ‘Benjamin’
	

	first_name
	= ‘Ben’
	LIKE ‘Frank%’
	

	
	
	
	

Note that more Or… columns may be added as needed and that any criteria condition for a query may be represented into this grid of the Columns pane, given that complex expressions involving SQL functions may be entirely included in the Column grid-column not using the Criteria/Or… grid-columns.

Finally, other than specifying query criteria, sorting and grouping, the Columns pane may also be used as a collection of fields on which the SQL functions toolbar may be applied. We will consider these SQL functions in the next section.

Using SQL functions

The SQL functions toolbar features include all the SQL functions that are needed for the creation of complex queries. It is destined to help novice SQL users to get started without referencing various reference books for the syntax of the SQL functions supported in the particular backend database engine in use. These functions are categorized into 10 drop-down combo-box buttons plus two buttons as is shown in Figure 1.16 (or Figure 1.8). In this section we will first list all the options for each of these toolbar buttons, and then outline their general usage.

[image: image16.png]
Figure 1.16. Showing the SQL functions toolbar with categorization
1. Functions for concatenation of fields into string: For these functions the user may select multiple rows in the grid of the Columns pane, and then apply any of the options in the drop-down combo-box list. In general, all selected fields are first converted into string data type and then concatenated in the pattern defined by the selected function option. We list next these function options:

	Fld1+“, ”+...+“, ”+FldN
	Convert fields to string, then concatenate with comma+space between fields,

	Fld1+“,”+...+“,”+FldN
	Convert fields to string, then concatenate with comma between fields,

	Fld1+“ ”+...+“ ”+FldN
	Convert fields to string, then concatenate with space between fields,

	Fld1+...+FldN
	Convert fields to string, then concatenate,

	Fld1+“-”+...+“-”+FldN
	Convert fields to string, then concatenate with hyphen between fields,

	Fld1+“ - ”+...+“ - ”+FldN
	Convert fields to string, then concatenate with space+hyphen+space between fields,

	Fld1+“, ”+Fld2+“ ”+Fld3
	This is for “LastName, Firstname MI” format,

	Fld1+“ ”+Fld2+“. ”+Fld3
	This is for “FirstName MI. Lastname” format.

2. Functions for masking concatenated fields: These function options may be applied on multiple fields selected in the grid of the Columns pane. They implement a combination of conversion, concatenation and mask formatting. We list next all the mask format functions:

	Phone [LO] : 1-999-999-9999
	Long phone number with local and area codes, the concatenation is assumed to be an 11-character string.

	Phone [LO] : 1 999-999-9999
	Long phone number with local and area codes, the concatenation is assumed to be an 11-character string.

	Phone [AC] : (999) 999-9999
	Phone number with area code, the concatenation is assumed to be 10-character string.

	Phone [AC] : 999-999-9999
	Phone number with area code, the concatenation is assumed to be 10-character string.

	Phone [AC] : 999.999.9999
	Phone number with area code, the concatenation is assumed to be 10-character string.

	Phone [ACX]: (999) 999-9999 (ext 00000)
	Phone number with area code and extension, the concatenation is assumed to be more than 10-character string.

	Phone [SH] : 999-9999
	Short phone number, the concatenation is assumed to be 7-character string.

	Area Code : (999)
	Area code, storage is assumed to be 3-character string

	Extension : (ext 00000)
	Extension

	Extension : -X00000
	Extension

	SS# : 999-99-9999
	Social security number, storage is assumed to be 9-character string.

	Fed ID : 99-9999999
	Federal ID, storage is assumed to be 9-character string.

	Zip Code : 99999-9999
	Zip code, storage is assumed to be 9-character string.

	Bank Acc : 99999-99999
	Bank account number, storage is assumed to be 10-character string.

	Cred Card : 9999-9999-9999-9999
	Credit card number, storage is assumed to be 16-character string.

	ISBN : 9-99-999999-9
	ISBN, storage is assumed to be 10-character string.

	ISBN : 9-999-99999-9
	ISBN, storage is assumed to be 10-character string.

	ISBN : 9-9999-9999-9
	ISBN, storage is assumed to be 10-character string.

	ISBN : 9-99999-999-9
	ISBN, storage is assumed to be 10-character string.

	ISBN : 9-999999-99-9
	ISBN, storage is assumed to be 10-character string.

3. Aggregate functions: The aggregate functions apply to a single field selection in the grid of the Columns pane. We will list all aggregate function options with the actual string that is inserted into the current cursor location in the SQL pane. Note that we will only give the MS-SQL Server versions of these insert strings leaving the Oracle or other versions to the user to experiment.

	Option name in the popup list
	Inserted string (where Fld is the selected field)

	Average

	AVG(Fld)

	Average Distinct
	AVG(DISTINCT Fld)

	Count
	COUNT(Fld)

	Count Distinct
	COUNT(DISTINCT Fld)

	Maximum
	MAX(Fld)

	Minimum
	MIN(Fld)

	Standard Deviation
	STDEV(Fld)

	Sum
	SUM(Fld)

	Sum Distinct
	SUM(DISTINCT Fld)

	Variance
	VAR(Fld)

4. String functions: The string functions may apply on one or two selected fields from the grid of the Columns pane. We list these functions next (again, we only specify the MS-SQL Server version of the interpretation of the functions):

	Option name in the popup list
	Inserted string (where Fld is the selected field)

	CharIndex
	CHARINDEX(sSearchFor, Fld, nPos)

	Difference
	DIFFERENCE(Fld1, Fld2)

	Left
	LEFT(Fld, nLen)

	Length
	LEN(Fld)

	Lower
	LOWER(Fld)

	LTrim
	LTRIM(Fld)

	PatIndex
	PATINDEX(sPattern, Fld)

	Replace
	REPLACE(Fld, sSearchFor, sReplace)

	QuoteName
	QUOTENAME(Fld,']')

	LeftPad
	REPLICATE(' ', nLen-LEN(Fld))+Fld

	RightPad
	Fld+REPLICATE(' ', nLen-LEN(Fld))

	Reverse
	REVERSE(Fld)

	Right
	RIGHT(Fld, nLen)

	RTrim
	RTRIM(Fld)

	Soundex
	SOUNDEX(Fld)

	Space
	SPACE(nLen)

	Str
	STR(Fld, nLen, nDecimal)

	Stuff
	STUFF(Fld, nStart, nLen, sStuffWith)

	SubString
	SUBSTRING(Fld, nStart, nLen)

	Trim
	LTRIM(RTRIM(Fld))

	Upper
	UPPER(Fld)

5. Numeric functions: The numeric function are listed next (we only specify the MS-SQL Server version of the interpretation of the functions):

	Option name in the popup list
	Inserted string (where Fld is the selected field)

	Absolute Value
	ABS(Fld)

	Ceiling
	CEILING(Fld)

	Floor
	FLOOR(Fld)

	Round
	ROUND(Fld, nLen, 0)

	Truncate
	ROUND(Fld, nLen, 1)

	Sign
	SIGN(Fld)

6. Date Part functions: The date part functions are listed next (we only specify the MS-SQL Server version of the interpretation of the functions):

	Option name in the popup list
	Inserted string (where Fld is the selected field)

	Year
	DATEPART(yy, Fld)

	Quarter
	DATEPART(qq, Fld)

	Month
	DATEPART(mm, Fld)

	Day of Year
	DATEPART(dy, Fld)

	Day
	DATEPART(dd, Fld)

	Week
	DATEPART(ww, Fld)

	Weekday
	DATEPART(dw, Fld)

	Hour
	DATEPART(hh, Fld)

	Minute
	DATEPART(mi, Fld)

	Second
	DATEPART(ss, Fld)

	Millisecond
	DATEPART(ms, Fld)

7. Date Name functions: The date name functions are listed next (we only specify the MS-SQL Server version of the interpretation of the functions):

	Option name in the popup list
	Inserted string (where Fld is the selected field)

	Year
	DATENAME(yy, Fld)

	Quarter
	DATENAME(qq, Fld)

	Month
	DATENAME(mm, Fld)

	Day of Year
	DATENAME(dy, Fld)

	Day
	DATENAME(dd, Fld)

	Week
	DATENAME(ww, Fld)

	Weekday
	DATENAME(dw, Fld)

	Hour
	DATENAME(hh, Fld)

	Minute
	DATENAME(mi, Fld)

	Second
	DATENAME(ss, Fld)

	Millisecond
	DATENAME(ms, Fld)

8. Conversion to char functions: We outline now the conversions to strings from all the data types (we only specify the MS-SQL Server version of the interpretation of the functions):

	Option name in the popup list
	Inserted string (where Fld is the selected field)

	Float [6-digit]
	CONVERT(VARCHAR, Fld, 0)

	Float [8-digit Scientific]
	CONVERT(VARCHAR, Fld, 1)

	Float [16-digit Scientific]
	CONVERT(VARCHAR, Fld, 2)

	Other Numeric
	CONVERT(VARCHAR, Fld)

	Currency [9999.99]
	CONVERT(VARCHAR, Fld, 0)

	Currency [9,999.99]
	CONVERT(VARCHAR, Fld, 1)

	Currency [9999.9999]
	CONVERT(VARCHAR, Fld, 2)

	Date-Time [mm/dd/yy]
	CONVERT(VARCHAR, Fld, 1)

	Date-Time [mm/dd/yyyy]
	CONVERT(VARCHAR, Fld, 101)

	Date-Time [yy.mm.dd]
	CONVERT(VARCHAR, Fld, 2)

	Date-Time [yyyy.mm.dd]
	CONVERT(VARCHAR, Fld, 102)

	Date-Time [dd/mm/yy]
	CONVERT(VARCHAR, Fld, 3)

	Date-Time [dd/mm/yyyy]
	CONVERT(VARCHAR, Fld, 103)

	Date-Time [dd.mm.yy]
	CONVERT(VARCHAR, Fld, 4)

	Date-Time [dd.mm.yyyy]
	CONVERT(VARCHAR, Fld, 104)

	Date-Time [dd-mm-yy]
	CONVERT(VARCHAR, Fld, 5)

	Date-Time [dd-mm-yyyy]
	CONVERT(VARCHAR, Fld, 105)

	Date-Time [dd mon yy]
	CONVERT(VARCHAR, Fld, 6)

	Date-Time [dd mon yyyy]
	CONVERT(VARCHAR, Fld, 106)

	Date-Time [Mon dd, yy]
	CONVERT(VARCHAR, Fld, 7)

	Date-Time [Mon dd, yyyy]
	CONVERT(VARCHAR, Fld, 107)

	Date-Time [mm-dd-yy]
	CONVERT(VARCHAR, Fld, 10)

	Date-Time [mm-dd-yyyy]
	CONVERT(VARCHAR, Fld, 110)

	Date-Time [yy/mm/dd]
	CONVERT(VARCHAR, Fld, 11)

	Date-Time [yyyy/mm/dd]
	CONVERT(VARCHAR, Fld, 111)

	Date-Time [yymmdd]
	CONVERT(VARCHAR, Fld, 12)

	Date-Time [yyyymmdd]
	CONVERT(VARCHAR, Fld, 112)

	Date-Time [mon dd yyyy hh:miAM]
	CONVERT(VARCHAR, Fld, 0)

	Date-Time [mon dd yyyy hh:mi:ss:mmmAM]
	CONVERT(VARCHAR, Fld, 9)

	Date-Time [dd mon yyyy hh:mm:ss:mmm]
	CONVERT(VARCHAR, Fld, 13)

	Date-Time [hh:mm:ss]
	CONVERT(VARCHAR, Fld, 8)

	Date-Time [hh:mi:ss:mmm]
	CONVERT(VARCHAR, Fld, 14)

	Date-Time [yyyy-mm-dd hh:mi:ss]
	CONVERT(VARCHAR, Fld, 20)

	Date-Time [yyyy-mm-dd hh:mi:ss.mmm]
	CONVERT(VARCHAR, Fld, 21)

	Date-Time [yyyy-mm-ddThh:mm:ss:mmm]
	CONVERT(VARCHAR, Fld, 126)

9. Conversion to number functions: We outline next all the conversion forms to numeric data type (we only specify the MS-SQL Server version of the interpretation of the functions):

	Option name in the popup list
	Inserted string (where Fld is the selected field)

	Integer [99999999]
	CAST(Fld AS NUMERIC)

	Decimal [99999999.9]
	CAST(Fld AS NUMERIC(38,1))

	Decimal [99999999.99]
	CAST(Fld AS NUMERIC(38,2))

	Decimal [99999999.999]
	CAST(Fld AS NUMERIC(38,3))

	Decimal [99999999.9999]
	CAST(Fld AS NUMERIC(38,4))

	Decimal [99999999.99999]
	CAST(Fld AS NUMERIC(38,5))

	Decimal [99999999.999999]
	CAST(Fld AS NUMERIC(38,6))

10. Conversion to date functions: We outline next all the conversion forms to date data type (we only specify the MS-SQL Server version of the interpretation of the functions):

	Option name in the popup list
	Inserted string (where Fld is the selected field)

	Date-Time
	CAST(Fld AS DATETIME)

	Small Date-Time
	CAST(Fld AS SMALLDATETIME)

	Time-Stamp
	CAST(Fld AS TIMESTAMP)

11. Null Case function: This toolbar button will insert the syntax for Null Case conditional in the SQL pane, for example in the case of MS-SQL Server this string is as follows:

COALESCE(Fld, vNullCaseValue)
where Fld is the selected field in the Columns pane and vNullCaseValue must be replaced with a proper value, which will handle the case when the field Fld is NULL.

Note that in Oracle this Null Case function is as follows:

NVL(Fld, vNullCaseValue)
12. Simple Case: This toolbar button will insert the syntax for Case conditional in the SQL pane, for example in the case of MS-SQL Server this string is as follows:

CASE Fld

WHEN when_expression_1 THEN result_expression_1

ELSE else_expression

END

where Fld is the selected field on which the case will be defined, while the dummy-variables when_expression_1, result_expression_1 and else_expression must be edited after this insertion into the SQL pane. Note that the WHEN-phrase may be more than one case, which may be added by the user after the insertion.

Note that the corresponding simple case string in the case of Oracle may utilize the DECODE function, for example, in the following format:

DECODE(Fld, when_expression_1, result_expression_1,

else_expression)
We illustrate now the general usage of the SQL functions toolbar. Essentially, the user first selects some fields in the Columns pane, and then applies the desired function over these selected fields. As a result of this action, the corresponding fields in the SQL pane will be replaced by the syntax of the selected function with the selected field columns as possible arguments. In general, some functions may have other arguments with dummy values. These dummy values must be replaced by either a field name or some constant value.

[image: image17.jpg]
Figure 1.17. Showing the SQL function application
For example to apply the Left SQL function to the ContactName field, we first select the ContactName field-row in the Columns pane (see Figure 1.17 for more details). Then we drop-down the String functions toolbar button and select the Left function option from the drop-down list. As a result of this operation the corresponding text “Customers.ContactName” in the SQL pane: will be replaced by the following text:

LEFT(Customers.ContactName, nLen)

where nLen is a dummy variable and therefore must be replaced by some number.

Defining SQL Manually

The user may define a query directly via the SQL pane, using this pane as an SQL editor. To check the validity of the SQL text that is entered manually into the SQL pane, the user may habitually use the F5 short-key to trigger the Check SQL Syntax button (or alternatively click this button). This will check the SQL text against the backend database defined by the current data access connection. One may also copy-paste text from external programs into the SQL pane, for example the user may use the Get Details command over the DB Browser pane, from which text may be copied to be pasted directly into the SQL pane.

Direct entry into the SQL pane is indispensable when the query is one of the following types:

· DDL (Data Definition Language) SQL statements,

· EXEC stored-procedure command statements,

· SELECT user-function command statements,

We should emphasize that for such SQL statements the Relations and Columns panes may be useless and therefore the ELS-QB interface may be used only as an SQL editor.

Running the Query and the Result tab

After creating a query via the ELS-QB visual interface, the user may execute the query by clicking the blue arrow button in the toolbar on the right of the tabs, or use the Execute menu item under the Command menu or alternatively push the F8 short-key on the keyboard. When executing a query, the resulting records will be displayed in the Result tab-view. Note that in the case when a query needs a long time to execute, the arrow button becomes disabled and the red stop button becomes enabled, so that the user may interrupt the execution process. Therefore the execution process in the ELS-QB is multi-threaded and asynchronous, with a fast response to halt the process whenever the user clicks the stop button.

The grid in the Result tab-view has two modes of display, unbound and ADO bound modes. For better performance you may want to use the ADO bound mode, which will display large amount of data in a much shorter time than the unbound mode. Also, if you want to edit the query result directly from the Result tab-view, then it is mandatory to use the ADO bound mode.

Exporting and Printing

The export and print features apply to both the content of the SQL pane and the content of the Result tab-view. In particular, using copy/paste operations the user may copy the content of the SQL pane to the clipboard, and then paste this content into another text editor application. The user may also print the content of the SQL pane to get a hardcopy of the query text derived in the ELS-QB. In addition to the export and print operations there are Find and Replace operations that may be applied on the content of the SQL pane.

In the case of the Result tab-view, the copy/paste operation is more useful, since any segment of the result grid may be copy/paste into other MS-Office applications (e.g. Excel, Word, etc.). The user may also print the result of a query via the Print menu item. In addition, the user may use the Find operation to search for a particular text in the result grid.

Besides copy/paste method of exporting query result, the query builder host application may expose the direct export features of the ELS-QB component. These features include export of the query result to Variable and Fixed Text, CSV (Excel), dBASE, and XML file formats. For example, the user may select an Export Result menu command, which will call an Export Query As file dialog. In this file dialg you will see the various format options in the Save as type combo-box. Entering a file name and selecting the Text Files type will bring the following dialog after submitting the dialog:
[image: image18.jpg]
Figure 1.18. Showing the Text Format dialog
In this Text Format dialog, using the File Format radio controls, the end-user may select either Delimited variable text format or Fixed Width text format. The Field Delimiter control will define the field separator delimiter character string (e.g. comma). The Text Qualifier control will define the character data field wrapper delimiter (e.g. double-quote). Both of these controls are applicable only in the case of the Delimited variable text format. The Date-Time Format specifies the date-time formatting to be used when exporting date-time fields. Possible date-time formats may be either selected from the combo-box’s drop-down list or entered directly via keyboard. The Date Delimiter defines the character between year, month and day (e.g. “/” or “-”). The Time Delimiter defines the separator character for time. The Decimal Symbol defines the decimal point symbol (e.g. “.” in US, “,” in Europe). The Include fieldnames as first row check-box if checked will include the field names as the first row of the exported file. The Field Information list-box will list all the fields of the query along with respective positions and widths of the fields. In the Fixed Width case, the widths of these fields may be adjusted by the Width edit-box next to the Field Information list-box control.
To export the query result as a dBASE or XML format, the end-user must select the Export Result menu command, and in the Export Query As file dialog select the dBASE or XML option from the Save as type combo-box. For the XML export, the user has the additional option to include the XML document header declaration and the data root tag (see Figure 1.19).
[image: image19.jpg]
Figure 1.19. Showing the Text Format dialog
Storage and File Processing Support

ELS-QB has an internal storage mechanism that consists of a PRJ-file for each project, and CON-file for each connection node in the project. The PRJ-file essentially stores path information for the project, while a CON-file will store the following information:

· The data access connection information,

· The query information for queries created under the connection node,

We should emphasize that the CON-files are binary files and should not be edited by external text editors. The data access connection information stored in a CON-file includes all necessary data access information needed to connect to the backend database, including password (if password save feature is used in the definition of the data access connection). Note that all passwords are stored in an encrypted manner, providing some degree of security.

A CON-file stores all the saved queries under a connection node. In general, only the text of the SQL pane is stored, from which the content of the other panes is derived whenever the query is opened. Each data access connection node displayed in the ELS-QB will correspond to a separate CON-file, so that under a project subdirectory there may be several CON-files, one for each connection node.

Transferring Data Between Connections

ELS-QB has a powerful data transfer feature, which may be used to transfer the resulting data of the currently active open query into any database defined by the connections in the Connection pane. There are two options for importing data into a selected connection, namely:

· Inserting the result of the active query into a new table in the destination database defined by the selected connection, in which case the new table structure is created before import.

· Appending the result of the active query into an existing table in the destination database defined by the selected connection.

To transfer data between connections, first open a query in the source connection defining the source database. This query must be a SELECT statement, in particular a query that returns records. Test your query and execute it against the backend database to check or see that the data is to your liking. Then from your application’s menu, select either Insert into new table or Append to existing table menu item under the menu Import Result. In either case, the Import dialog is displayed for further selection or specification of destination connection, database and table name (see Figure 1.20 for more details).

[image: image20.png]
Figure 1.20. Showing the Import dialog
The Import dialog allows import into any of the existing connections in the Connection pane (i.e. all CON-files in the ELS-QB project). Therefore, a good habit towards the aim of data transfer, is to define connections for each and all databases that interests you in your work. Given this then, the Import dialog makes it very easy to transfer data from one connection into the other. Essentially, all you have to do is to specify the destination connection from the Select destination connection list-box, check the Import Option, then select the database from the Database Name combo-box, and finally either define a table name (if you selected Insert into new table option in the Import Option) or select a table from the list of existing tables in the selected database (if you selected Append to an existing table option in the Import Option).

Once the proper values in the Import dialog is selected, you may click the Import button to run the import process. The import process will create the table structure if necessary, and then import the collection of all records resulting from the active query into the destination table.

Note that when importing data into a new table in the destination database, the structure of the destination table (which was created as a result of the import process) will not have any field constraints.
INSERT, UPDATE. DELETE Queries
In addition to SELECT queries, the ELS-QB query builder can handle the following query types:

· INSERT queries,

· INSERT VALUES queries,

· UPDATE queries,

· DELETE queries,

· Make Table queries.

To create an INSERT query, from the New Query menu select the INSERT menu command. This will create an empty instance of the query builder window in the INSERT query mode. The end user must drag-drop tables or views to develop the SELET statement of the INSERT query. For example drag-droping the Suppliers table of the Northwind database into the Relations pane will insert the following text into the SQL pane:

INSERT INTO table_name
SELECT

*

FROM

Suppliers
The user then must replace the dummy variable table_name with an existing table name in the target database. Note that all the edit operations via the Relations and Columns panes apply to the SELECT statement of this query adding only “(, , ... ,)” column separators after the INSERT statement. The user must then enter the corresponding target field names directly in this column separator string.

The Make Table query is similar to the INSERT query with the only exception that the table_name may be any name, and that the query will create a new table with this specified name.

The INSERT VALUES query is similar to the INSERT query with the exception that only one row of field values can be executed at a time. To create an INSERT VALUES query, from the New Query menu select INSERT VALUES menu command. This will create an empty instance of the query builder window in INSERT VALUES mode. Note that in this mode the Columns pane will have only two columns, namely Column and New Value. Drag-dropping Suppliers table in the Relations pane for example, will insert the following text in the SQL pane:

INSERT INTO Suppliers

()

VALUES ()

To define the columns for the insert query the user must use the Relations pane to check all applicable fields and then enter the corresponding field values under the New Value column of the Columns pane.
To create an UPDATE query, the user must select the UPDATE menu command from the New Query menu. This will create an empty instance of the query builder window in the UPDATE mode. Note that in this mode the Columns pane will initially have the following three columns: Column, New Value and Criteria. Drag-dropping a table into the Relations pane will start the UPDATE SQL statement. To define the update columns, the user may select applicable field via the Relations pane and then enter the field value and criteria in the Columns pane. For example, to modify the address of “Exotic Liquids” company’s address in the Suppliers table to a new address, the user must perform the following simple steps:

1. Create a new UDPATE query via the UPDATE menu command of the New Query menu,

2. Drag-drop the Suppliers table from the DB Browser pane into the Relations pane,

3. In the Relations pane select the SupplierID, CompanyName and Address fields,
4. In the Columns pane enter 1 in the Criteria column of the SupplierID field-row, and respectively enter the value “'Exotic Liquids Inc'” for the New Value of the CompanyName field-row and “'230 Casa Nova Blvd'” for the New Value of the Address field-row.

5. Also, make sure that the “SupplierID=,” text is removed from the resulting SQL command in the SQL pane.

The resulting command in the SQL pane will be as follows:

UPDATE Suppliers

SET
CompanyName = 'Exotic Liquids Inc',
Address = '230 Casa Nova Blvd'

WHERE

(SupplierID = 1)
The DELETE query is similar to UPDATE query with the exception that the Columns pane does not have any New Value column.

Visual Basic Programmer’s Reference
The ELS-QB ActiveX component can be used in any programming environment that supports OLE custom controls, including the following:

· Visual C++ 6.0 (and above)
· Visual Basic 6.0

· Visual Basic .NET

· C# .NET

· Visual InterDev

· Microsoft Access 97 (and above)

This Visual Basic programmer's Reference describes all the features of ELS-QB ActiveX component available to Visual Basic programmer.
In the following description of ELS-QB ActiveX component’s features the “object” placeholder represents an object expression that evaluates to an instance of ELS-QB object created within the host application.

· Methods of ELS-QB ActiveX,

GetConnectionName () As String
SetConnectionName (sConnName As String) As Boolean
NewDBConnection () As Boolean
OpenDBConnection (sConnName As String) As Boolean
GetConnection (sConnName As String) As String
SetConnection (sConnName As String, sConnStr As String) As Boolean
OpenConnection (sDummyName As String, sConnStr As String) As Boolean

CloseConnection () As Boolean
SaveConnection () As Boolean
RemoveConnection (sConnName As String) As Boolean
GetQueryName () As String
SetQueryName (sQryName As String) As Boolean
NewQuery () As Boolean
SaveQuery () As Boolean
GetSQLText () As String

SetQueryText (sQryText As String) As Boolean

OpenQuery (sConn As String, sQry As String) As Boolean

CloseQuery (bWithCancel As Long) As Boolean

OpenSelectedQuery () As Boolean

RemoveQuery (sConnName As String, sQryName As String) As Boolean

ShowQueryFilename (bShow As Long) As Boolean

CheckSQLSyntax () As Boolean

EnableSQLCommands(nCmdType As Long) As Boolean
ShowToolButton (nButton As Long, bShow As Long) As Boolean

ShowPane (nPane As Long, bShow As Long) As Boolean

ShowDBObjects (nShowComb as long) As Boolean

SetStoragePath (sPath As String)

GetStoragePath () As String

IsPaneVisible (nPane As Long) As Boolean

UpdatePane (nPane As Long) As Boolean

SetFontType (sFontType As String, lFontSize As Long) As Boolean

DoCommand (nCommand As Long) As Long

QueryStatus (nCommand As Long) As Boolean

GetModified () As Boolean
CanExecute () As Boolean
Execute ()

CanStop () As Boolean
Stop ()
IsRunning () As Boolean
SetMessageBoxTitle (sText As String) As Boolean

ConnectionEdit (bEnable As Long) As Boolean

GetDetailMItem (bEnable As Long) As Boolean

CancelExecute () As Boolean
Import (nIsAppend As Long, sConnName As String, sDatabase As String,

 sTableName As String) As Boolean

GetRecordsetObj () As Unknown

GetConnectionObj () As Unknown

SetQueryTimeout (nTimeout As Long) As Boolean

GetQueryTimeout () As Long

ShowColumnsToolbar (bVisible As Long) As Boolean

ShowColumnsToolButton(nButton As Long, bVisible As Boolean) As Boolean
GetRecCount () As Long

ShowRecCount (bShow As Long) As Boolean

GetCharLinePos () As Long

GetCharColPos () As Long

GetQueryTitle () As String

GetActiveTab () As Long

ActivateTab(nTab As Long) As Boolean

ShowResultTab(bVisible As Long) As Boolean

SetSQLEditorFont (lpszFontName As String, bItalic As Long, bBold As Long,

 lSize As Long) As Boolean

SetGridFont (lpszFontName As String, bItalic As Long, bBold As Long, lSize As Long,

 bStrikeOut As Long, bUnderline As Long, lColor As Long) As Boolean
GetQueryText () As String

SetSQLText (sSQLText As String) As Boolean

DoPageSetup (lpszKey As String) As Boolean
DoIdle (lCount As Long) As Boolean

SetResultEditMode (bOn As Long) As Boolean

GetResultEditMode () As Boolean
SetRegistryKey (lpszKey As String) AsBoolean

GetOverStrike () As Boolean
GenerateHTMLString (bIsMailResult As Boolean, bDescription As Boolean,

 bSQL As Boolean, bLogo As Boolean, lpszHrefSite As String,

 lpszHrefText As String, lpszText As String) As String

SetDBConnection (sConnStr As String) As Boolean

GetDBConnection () As String

GetErrorMessage () As String
ClearErrorMessage ()
ShowErrorMessages (bShow As Long) As Boolean
GetResultGridADOBound () As Boolean
SetResultGridADOBound (bOn As Long) As Boolean
NewQueryX (nQType As EQBQTYPE) As Boolean
ShowDBObjectsX (nShowComb As EQBShowDBObjects, sPattern As String) As Boolean
dBASEExport () As dBASEExport
TextExport () As TextExport
XMLExport () As XMLExport
· Events of ELS-QB ActiveX,

PreExecute ()

PostExecute ()

OnNotifyStatus ()
· Constants of ELS-QB ActiveX,

· Objects of ELS-QB ActiveX,

TextExport
InField
OutField
dBASEExport
XMLExport
· Collections of ELS-QB ActiveX,

InFields
OutFields
Methods

Syntax

object.GetConnectionName

Description
Returns a string containing the name of the connection node that is currently active or open in the Connection pane.

Remarks
Call this function to obtain the name of the connection node that is currently active or open in the Connection pane of ELS-QB control.

Note: The returned string may be empty.

Example
For a sample code of GetConnectionName usage see the example of SetConnectionName
 [Methods Index]

Syntax

object.SetConnectionName sConnName

sConnName
String that specifies the new name of the currently active connection node.

Description
Call this method to rename a node that is currently active or open in the Connection pane.

Remarks
SetConnectionName method returns True if the Connection pane is visible, a connection node is active and the renaming of this connection node was successful. Otherwise returns False.

Example
This sample code shows how to rename currently active connection in ELS-QB component.
Private Function RenameConnection(sNewName As String) As Boolean
Dim sCurrName

RenameConnection = True
sCurrName = ELS_QBCtrl.GetConnectionName

If sCurrName = “” Then
‘ No active connection exists

RenameConnection = False
Exit Function

End If

If sCurrName <> sNewName Then
RenameConnection = ELS_QBCtrl.SetConnectionName(sNewName)

Exit Function

End If

End Function
[Methods Index]

Syntax

object.NewDBConnection

Description
This method calls the NEW DB Connection window from ELS-QB component, so that the user may create a new database connection in the Databases folder at run-time.

Remarks
NewDBConnection method returns True if the Connection pane of ELS-QB control is enabled and False otherwise

Example
For a sample code of NewDBConnection usage see Sub itmFileNewDBConnection_Click()

of the frmELS_QB in ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.OpenDBConnection sConnName

sConnName
String that specifies the name of an existing connection node to be opened.

Description
Call this method to open an existing connection specifying only the connection name.

Remarks
OpenDBConnection method returns True if the connection is opened successfully, otherwise it returns False.

Example
This sample code shows how to open specified connection in ELS-QB component.
Private Function OpenSomeConnection(sConName As String) As Boolean
Dim sCurrName

OpenSomeConnection = True
sCurrName = ELS_QBCtrl.GetConnectionName

If sConnName <> “” Then
OpenSomeConnection = False
Exit Function

End If

If sCurrName <> sConName Then
OpenConnection = ELS_QBCtrl.OpenDBConnection(sConName)

End If

End Function

[Methods Index]

Syntax

object.GetConnection sConnName

sConnName
String that specifies the name of an existing connection node.

Description
This method returns the connection string of the connection specified in the sConnName parameter.

Remarks
GetConnection method returns String containing the connection string of the specified connection.

Example
For a sample code of GetConnection usage see the example of SetConnection
 [Methods Index]

Syntax

object.SetConnection sConnName, sConnStr

sConnName
String that specifies the name of an existing connection node.

sConnStr
String that specifies a connection string to be passed to sConnName

connection object.

Description
Call this method to pass a connection string to a connection object before instantiation. This function may be used to set the connection string before opening or instantiating a connection (see OpenConnection).

Remarks
SetConnection method returns True if the connection is set successfully, otherwise returns False.

Example
This sample code shows how to change the connection string of the specified connection at run time in ELS-QB component.

‘.........................

Dim sConn1, sConn2, sConnStr1

sConn1 = “Connection1”

sConn2 = “Connection2”

sConnStr1 = ELS_QBCtrl.GetConnection(sConn1)

ChangeConnString sConn2, sConnStr1

‘..............................

Private Function ChangeConnString(sConn As String, sConnStr As String)

As Boolean

ChangeConnString = True
Dim sCurrConnStr

sCurrConnStr = ELS_QBCtrl.GetConnection(sConn)
If sCurrConnStr <> sConnStr Then
ChangeConnString =

ELS_QBCtrl.SetConnection(sConn, sConnStr)
End If

End Function

 [Methods Index]

Syntax

object.OpenConnection sConnName, sConnStr

sConnName
String that represents a connection name.

sConnStr
String that specifies a connection string to be passed to ELS-QB. It may be the empty string if SetConnection function had been used to define the proper connection string prior to calling OpenConnection.

Description
Call this method to define and open a new dynamic connection specified by the sConnStr connection string.

Remarks
OpenConnection method returns True if the connection string variable is well defined and the connection has been opened successfully, otherwise returns False.

Example
The following code demonstrates how to create, save and close connection dynamically in ELS-QB component.

‘.........................

Dim sConnName, sConnStr

sConnName = “Northwind”

‘ Sample connection string

sConnStr = “Provider=SQLOLEDB.1;Persist Security Info= False;” & _

“UserID=sa;Initial Catalog=Northwind;Data Source=SERVER1”

If ELS_QBCtrl.OpenConnection(sConnName, sConnStr) Then
ELS_QBCtrl.SaveConnection

ELS_QBCtrl.CloseConnection

End If

[Methods Index]

Syntax

object.CloseConnection

Description
Call this method to close the currently active or open connection.

Remarks
CloseConnection method returns True if currently a connection is active or open and the close operation was successful, otherwise False.

Example
For a sample code of CloseConnection usage see the example of OpenConnection
 [Methods Index]

Syntax

object.SaveConnection

Description
Call this method to save the currently active or open connection.

Remarks
SaveConnection method returns True if currently a connection is active or open and the save operation was successful, otherwise False.

Example
For a sample code of SaveConnection usage see the example of OpenConnection
 [Methods Index]

Syntax

object.RemoveConnection sConnName

sConnName String that represents connection name.

Description
Call this method to remove an existing connection by specifying the connection node’s name.

Remarks
RemoveConnection method returns True if the connection was found and operation was successful, otherwise it returns False.

Example
The following code demonstrates how to remove the connection created in OpenConnection example.

Private Function DeleteConnection(sConn As String) As Boolean
 DeleteConnection = ELS_QBCtrl.RemoveConnection(sConn)

End Function
 [Methods Index]

Syntax

object.GetQueryName

Description
Call this method to obtain the name of the currently open query in the ELS-QB control.

Remarks
GetQueryName method returns String containing the name of the currently open query.

Example
For a sample code of GetQueryName usage see the example of SetQueryName
 [Methods Index]

Syntax

object.SetQueryName sQryName

sQryName
String containing query name.

Description
Call this method to rename the currently open query in the ELS-QB control.

Remarks
SetQueryName method returns True if a query is open and the operation successful, otherwise it returns False.

Example
This sample code shows how to rename currently active query in ELS-QB component.

Private Function RenameQuery(sNewName As String) As Boolean
RenameQuery = False
If sNewName = "" Then
 Exit Function

End If

Dim sCurrName

sCurrName = ELS_QBCtrl.GetQueryName()

If sCurrName <> sNewName Then
 RenameQuery = ELS_QBCtrl.SetQueryName(sNewName)

End If

End Function

[Methods Index]

Syntax

object.NewQuery

Description
This method creates and selects upon creation a new query, having default node label, under the currently selected connection container in the Databases folder of ELS-QB component’s Connection pane.

Remarks
NewQuery method returns True if the Connection pane of ELS-QB is enabled, otherwise returns False.
Note: The default label of a newly created query may be renamed at any time after its creation.

This function is retained in version 2.5 for backward compatibility. Please, use the extended NewQueryX method instead.

 Example
For a sample code of NewQuery usage see Sub itmFileNewQuery_Click() of the frmELS_QB in ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.SaveQuery

Description
Call this method to save the currently open query into the corresponding storage file of the ELS-QB component’s Connection pane connection container.

Remarks
SaveQuery method returns True if the query is stored successfully. If for some reason ELS-QB component is unable to save currently open query, then return value becomes False.

Example
For a sample code of SaveQuery usage see Sub itmFileSaveQuery_Click() of the frmELS_QB in ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.GetSQLText

Description
Call this method to obtain the SQL query text currently displayed in the SQL pane of ELS-QB control.
Remarks
GetSQLText method returns String containing the text of the currently active SQL statement from the SQL pane.

Note: The returned string may be empty.
Example
For a sample code of GetSQLText usage see the Function TranslateInto() of the frmELS_QB in ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.SetQueryText sQryText

sQryText

String containing query text.

Description
Call this method to set the query text or the content of the SQL pane of the ELS-QB control.

Remarks
SetQueryText method returns True if a query is open and the operation successful, otherwise it returns False.

Example
This sample code shows how programmatically you can change the SQL text of a sample query named “Orders” having as query text the following:

“SELECT * FROM Orders”

Dim sConnName, sQryName

sConnName = "Northwind"

sQryName = "Orders"

If ELS_QBCtrl.OpenQuery(sConnName, sQryName) Then
 Dim sSQL, sOldSQL

 sOldSQL = ELS_QBCtrl.GetSQLText()

 sSQL = sOldSQL

 sSQL = Replace(sSQL, "Orders", "Customers")

 If ELS_QBCtrl.SetQueryText(sSQL) Then
 If ELS_QBCtrl.CheckSQLSyntax() Then
 ELS_QBCtrl.SetQueryName "Customers"

 Else

 ELS_QBCtrl.SetQueryText sOldSQL

 End If

 End If

 ELS_QBCtrl.SaveQuery

 ELS_QBCtrl.CloseQuery True
End If

[Methods Index]

Syntax

object.OpenQuery sConn, sQry

sConn
String containing connection name.

sQry
String containing query name.

Description
Call this method to open specified query within the ELS-QB component.

Remarks
OpenQuery method returns True if the query has been opened successfully, otherwise it returns False.

Note: To open query successfully the specified sConn and sQry must exist.

Example
For a sample code of OpenQuery usage see the example of SetQueryText
 [Methods Index]

Syntax

object.CloseQuery bWithCancel

bWithCancel A value defining if the save confirmation window will be shown with an

extra “Cancel” button or not (0 or 1).

Description
Call this method to close the query currently selected in the Databases folder of ELS-QB component’s Connection pane, with an option to save or discard changes made.

Remarks
CloseQuery method returns True if the query was closed successfully, otherwise it returns False.

Example
For a sample code of CloseQuery usage see Sub itmFileCloseQuery_Click() of the frmELS_QB in ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.OpenSelectedQuery

Description
Call this method to open the query currently selected in the Databases folder of ELS-QB control’s Connection pane.

Remarks
OpenSelectedQuery method returns True if the query has been opened successfully, otherwise False.

Example
For a sample code of OpenSelectedQuery usage see Sub itmFileOpenQuery_Click() of the frmELS_QB in ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.RemoveQuery sConnName, sQryName

sConnName
String containing connection name.

sQryName
String containing query name.

Description
Call this method to remove a specified query from the ELS-QB component.

Remarks
RemoveQuery method returns True if the query has been removed successfully, otherwise it returns False.

Note: To remove the query successfully the specified sConnName and sQryName must exist.
Example
This sample code shows how programmatically you can remove a sample query named “Customers”

Dim sConnName, sQryName

sConnName = "Northwind"

sQryName = "Customers"

If ELS_QBCtrl.OpenQuery(sConnName, sQryName) Then
 ELS_QBCtrl.RemoveQuery sConnName, sQryName

End If

 [Methods Index]

Syntax

object.ShowQueryFilename bShow

bShow
A value that specifies the further visibility of the filename display (0 or 1).

Description
Call this method to show / hide the query filename display of the ELS-QB control.

Remarks
ShowQueryFilename method returns True if the operation was successful, otherwise it returns False.

Note: If this method is never called, the query filename is shown by default.
Example
This sample code shows how to allow the end user to toggle the filename display field of ELS-QB control.
gbShowQueryFileName = True
' Some command handler

Private Sub itmCmdToggleFNDisplay_Click()

 If ELS_QBCtrl.ShowQueryFilename(Not gbShowQueryFileName) Then
 gbShowQueryFileName = Not gbShowQueryFileName

 End If

End Sub

 [Methods Index]

Syntax

object.CheckSQLSyntax

Description
Call this method to trigger validation of the SQL statement of the query opened within ELS-QB control.

Remarks
CheckSQLSyntax method returns True if the syntax of the SQL statement of the currently open query is successfully verified against the back-end database, otherwise it returns False.

Note: If ELS-QB component fails to check successfully SQL syntax of a statement, it will deactivate Relations and Columns panes after a corresponding message prompt indicating the syntax error.
Example
For a sample code of CheckSQLSyntax usage see Sub itmCmdCheckSQLSyntax_Click() of the frmELS_QB in ELS_QBDemoVB project.

 [Methods Index]

Syntax

object. EnableSQLCommands nCmdType

nCmdType

Specifies the ESQLCmdType command type combination to enable, which may be the sum of any of the following possible values:

QB_SQL_INSERT
= 1

QB_SQL_UPDATE
= 2

QB_SQL_DELETE
= 4

QB_SQL_CREATE
= 8

QB_SQL_ALTER
= 16

QB_SQL_DROP
= 32

QB_SQL_EXEC
= 64

QB_SQL_ALL

= 128
Description
Call this method to enable the execution of specific types of SQL commands. By default, if this method is never called, only SELECT SQL commands can be executed.
Remarks
EnableSQLCommands method returns True if the operation is successful, otherwise it returns False.

Example

This sample code shows how to enable only DML queries:
Private Sub Form_Load()

' Some initalization code

ELS_QBCtrl.EnableSQLCommands QB_SQL_INSERT + QB_SQL_UPDATE + QB_SQL_DELETE
End Sub

[Methods Index]

Syntax

object.ShowToolButton nButton, bShow

nButton

Specifies the ELS-QB component’s toolbar button combination and may be any of the following values:

QB_CONNPANE_BTN
= 1

QB_DVWPANE_BTN
= 2

QB_RELPANE_BTN
= 3

QB_COLPANE_BTN
= 4

QB_SQLPANE_BTN
= 5

QB_CHKSQL_BTN
= 6

QB_EXECUTE_BTN
= 7

QB_STOP_BTN
= 8

QB_ALL_BTNS

= 9

bShow Specifies the further visibility of the selected button combination (0 or 1).

Description
Call this method to show / hide the specific button combination in the ELS-QB control’s toolbar (the toolbar located on left side of the Connection pane). Note that the QB_ALL_BTNS combination will show / hide the toolbar itself. This method may be used to hide or deactivate a certain functionality of the ELS-QB for either security or simplification purpose. For example, the developer may want to hide the Connection pane and the toolbar button corresponding to the toggling of show/hide of this pane (e.g. QB_CONNPANE_BTN). In this way the end-user may not have access to the Connection pane of the ELS-QB control.

Remarks
ShowToolButton method returns True if the operation is successful, otherwise it returns False.

Note: If this method is never called, all toolbar buttons are shown by default.
Example
This sample code shows how to allow the end user to toggle the visibility of a specified button of ELS-QB control’s toolbar.
gbRelBtnVis = True
' Some command handler

Private Sub itmCmdToggleRelPaneBtn_Click()

 If ELS_QBCtrl.ShowToolButton(QB_RELPANE_BTN, Not gbRelBtnVis) Then
 gbRelBtnVis = Not gbRelBtnVis

 End If

End Sub

 [Methods Index]

Syntax

object.ShowPane nPane, bShow

nPane

Specifies the ELS-QB component’s pane to be toggled and may be any of the following values:

QB_RELATION_PANE
= 1

QB_COLUMNS_PANE
= 2

QB_SQL_PANE

= 3

QB_CONNECTION_PANE
= 4

QB_DBBROWSER_PANE
= 5

bShow Specifies the further visibility of the pane (0 or 1).

Description
Call this method to show / hide the specific pane in the ELS-QB control.

ELS-QB component’s interface consists of five panes that may be toggled in view individually with the only constrain that at any given moment at least one of the following panes:

Relations Pane,

Columns Pane,

SQL Pane

is visible.

Remarks
ShowPane method returns True if the operation is performed successfully, otherwise it returns False.

Note: If this method is never called, then all panes are shown by default.
Example
For a sample code of ShowPane usage see Sub itmViewColumns_Click() of the frmELS_QB in ELS_QBDemoVB project.

 [Methods Index]

Syntax

object. ShowDBObjects nShowComb

nShowComb

Specifies the combination of objects categories of the DB Browser pane and may be any of the enumeration values of EQBShowDBObjects:

QB_DVW_ALL

= 1

QB_DVW_DBOONLY

= 2

QB_DVW_TABLES

= 4

QB_DVW_VIEWS

= 8

QB_DVW_PROCS

= 16

QB_DVW_FUNCTIONS

= 32

Description
Call this method to show / hide the certain categories of the DB Browser pane.

QB_DVW_ALL

show all tables, views, procedures, this is default

QB_DVW_DBOONLY

show all objects, owned by current user
(for example for SQL Server it is objects owned by dbo)

QB_DVW_TABLES

show all objects under Tables folder

QB_DVW_VIEWS

show all objects under Views folder

QB_DVW_PROCS

show all objects under Procedures folder

QB_DVW_FUNCTIONS

show all objects under Functions folder

Remarks
ShowDBObjects method returns True if the operation is performed successfully, otherwise it returns False.

Note: If this method is never called, then all objects are shown by default.

This method is retained in version 2.5 for backward compatibility. Please, use the extended ShowDBObjectsX method instead.
Example
This sample code shows how to programmatically hide Views and Procedures folders in the DB Browser pane and show only the Tables folder.

Private Sub Form_Load()

' Some initalization code

ELS_QBCtrl. ShowDBObjects QB_DVW_TABLES
End Sub

[Methods Index]

Syntax

object.SetStoragePath sPath

sPath
String specifies the absolute storage path value.

If sPath = vbNullString all connections of ELS-QB component will be removed.

Description
This method sets the directory path of ELS-QB component storage for the instance of the QB-object.

Remarks
SetStoragePath method does not return value.

Example
For a sample code of SetStoragePath usage see Sub NewProject() or Sub OpenProject() of the fileOpen module in ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.GetStoragePath

Description
Call this method to obtain the storage path of the currently active ELS-QB project.

Remarks
GetStoragePath method returns String containing the storage path of the currently active project.

Example
This sample code illustrates how GetStoragePath method may be used.

If ELS_QBCtrl.GetStoragePath <> “” Then
‘ this will reset ELS_QBCtrl

ELS_QBCtrl.SetStoragePath vbNullString

End If

 [Methods Index]

Syntax

object.IsPaneVisible nPane

nPane
Specifies the ELS-QB component’s pane and may be any of the

following values:

QB_RELATION_PANE
= 1

QB_COLUMNS_PANE
= 2

QB_SQL_PANE

= 3

QB_CONNECTION_PANE
= 4

QB_DBBROWSER_PANE
= 5

Description
Call this method to determine if the specified pane is currently visible within ELS-QB component.

Remarks
IsPaneVisible method returns True if the specified pane is visible within ELS-QB component and False otherwise.

 Example
For a sample code of IsPaneVisible usage see Sub mnuView_Click() of the frmELS_QB in ELS_QBDemoVB project.

 [Methods Index]

Syntax

object. UpdatePane nPane

nPane
Specifies the ELS-QB component’s pane and may be any of the

following values:

QB_RELATION_PANE
= 1

QB_COLUMNS_PANE
= 2

QB_SQL_PANE

= 3

QB_CONNECTION_PANE
= 4

QB_DBBROWSER_PANE
= 5

Description
Call this method to to update or refresh the specified pane of ELS-QB component.

Remarks
UpdatePane method returns True if the specified pane is updated successfully and False otherwise.

Example
This sample code shows how programmatically you can refresh the specified pane within ELS-QB control.

If ELS_QBCtrl.IsPaneVisible(QB_RELATION_PANE) Then
ELS_QBCtrl.UpdatePane QB_RELATION_PANE
End If

[Methods Index]

Syntax

object.SetFontType sFont, lFontSize

sFont

String that specifies the typeface name of the font.

lFontSize
Specifies font’s size value.
Description
Call this method to set the current font of ELS-QB component’s SQL pane to the specified font name and font size.

Remarks
SetFontType method returns True if the specified font is set and False otherwise

Example
For a sample code of SetFontType usage see Sub FontSetup() of the fileOpen module in ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.DoCommand nCommand

nCommand
Identifies the ELS-QB component command to invoke.
The ELS-QB component supports the following command IDs:

QB_CMD_UNDO

= 1,

QB_CMD_REDO

= 2,

QB_CMD_CUT

= 3,

QB_CMD_COPY

= 4,

QB_CMD_PASTE

= 5,

QB_CMD_SELECTALL

= 6,

QB_CMD_FIND

= 7,

QB_CMD_REPLACE

= 8,

QB_CMD_PRINT

= 9,

QB_CMD_PRINT_PREVIEW

= 10,

QB_CMD_PAGE_SETUP

= 11

Description
Call this method to execute the command specified by ELS-QB component command IDs.

Remarks
DoCommand method returns Zero if the command has been executed successfully, otherwise non-zero.

Example
For a sample code of DoCommand usage see Sub tbrMDI_ButtonClick() of the frmMDI or the Edit menu command handlers of frmELS_QB in ELS_QBDemoVB project.

[Methods Index]

Syntax

object.QueryStatus nCommand

nCommand
Identifies the command to query status of.
The ELS-QB component supports a variety of commands that can be

executed against the current contents of the SQL pane or Result window. These include commands to format the text, cut and paste, select or find and more.

The commands are executed by calling the DoCommand() method and passing to it one of the following command IDs of ELS-QB component:

QB_CMD_UNDO

= 1,

QB_CMD_REDO

= 2,

QB_CMD_CUT

= 3,

QB_CMD_COPY

= 4,

QB_CMD_PASTE

= 5,

QB_CMD_SELECTALL

= 6,

QB_CMD_FIND

= 7,

QB_CMD_REPLACE

= 8,

QB_CMD_PRINT

= 9,

QB_CMD_PRINT_PREVIEW

= 10,

QB_CMD_PAGE_SETUP

= 11

Description
Call this method, passing the same command IDs, to determine whether the command is valid in the current state of the ELS-QB component, for further conditional execution of the command.
Remarks
QueryStatus method returns True if the command is applicable and False otherwise.

Example
For a sample code of QueryStatus usage see Sub tbUITimer_Timer() of frmMDI or mnuEdit_Click() of frmELS_QB in ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.GetModified

Description
Call this method to determine if currently active query have been modified.

Remarks
GetModified method returns True if the currently active query have been modified

and False otherwise.

Example
For a sample code of GetModified usage see mnuFile_Click() of frmELS_QB in

ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.CanExecute

Description
Call this method to determine if ELS-QB component is able to execute an opened query.

Remarks
CanExecute method returns True if ELS-QB component has an opened query and no pending SQL command execution process exists and False otherwise.

Example
For a sample code of CanExecute usage see mnuCommand_Click() of frmELS_QB in

ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.Execute

Description
Call this method to execute the SQL statement contained in the SQL pane of ELS-QB

component.

Remarks
Execute method does not return any value.

Example
For a sample code of Execute usage see itmCmdExecute_Click() of frmELS_QB in

ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.CanStop

Description
Call this method to determine if ELS-QB component can stop an open running query.

Remarks
CanStop method returns True if a pending SQL command execution process can be stopped and False otherwise.

Example
For a sample code of CanStop usage note that the following code sample checks whether the running query can be stopped before attempting to stop:
' This will check if query can be stopped before stoping it

If ELS_QBCtrl.CanStop() Then

ELS_QBCtrl.Stop

End If
[Methods Index]

Syntax

object.Stop

Description
Call this method to stop any pending SQL statement execution process that is running

with in ELS-QB component.

Remarks
Stop method does not return any value.

Example
For a sample code of Stop usage see itmCmdStop_Click() of frmELS_QB in

ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.IsRunning

Description
Call this method to determine if ELS-QB component is currently in process of executing an SQL command.

Remarks
IsRunning method returns True if ELS-QB component is in process of SQL command execution, otherwise False.

Example
For a sample code of IsRunning usage see mnuCommand_Click() of frmELS_QB in

ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.SetMessageBoxTitle sText

sText
String that specifies the title for message box.
Description
Call this method to set the title of message box that are prompt from the ELS-QB component. For example, you may set this title to your application’s name.
Remarks
SetMessageBoxTitle method returns True if the operation is successful and False otherwise.

See also the ShowErrorMessage, GetErrorMessage and ClearErrorMessage methods.
Example
This sample code illustates how to set the title of message box in the Form_Load method of the host application.

Private Sub Form_Load()

' Some initalization code

ELS_QBCtrl. SetMessageBoxTitle = "MyApplication"

End Sub

 [Methods Index]

Syntax

object.ConnectionEdit bEnable

bEnable
Specifies whether to enable / disable (e.g. 1 / 0) the connection editing.
Description
Call this method to enable / disable editing or manipulating the connection objects. For example, if we call this function with bEnable = 0, then the popup menu that displays when the user right-mouse-button clicks over the nodes in the Connection pane, will be restricted in the following manner:

· When the user right-mouse-button clicks on the Databases folder, the popup menu is displayed with the New menu item disabled.

· When the user right-mouse-button clicks on any connection node, the popup menu is displayed with only the New and Open menu items enabled (all other menu items will be disabled).

This feature may be used in the particular case, when the host application essentially needs only one connection, and which remains constant throughout the application execution time.

Remarks
ConnectionEdit method returns True if the operation is successful, otherwise False.

Note: If this method is never called, the connection editing is enabled by default.

Example
This sample code illustates how within host the application to prevent end user performing edit operations described earlier in this reference.

Private Sub Form_Load()

' Some initalization code

............................

ELS_QBCtrl.ConnectionEdit False
............................

End Sub

 [Methods Index]

Syntax

object.GetDetailMItem bEnable

bEnable
Specifies whether to enable / disable (e.g. 1 / 0) the Get Details menu item in the popup menu triggered from the DB Browser pane.

Description
Call this method to enable / disable the Get Details menu item in the popup menu triggered from the DB Browser pane, so that, the end-user will not be able to acquire detailed information about the internal structure of the database.

Remarks
GetDetailMItem method returns True if operation is successful, otherwise False.

Note: If this method is never called, the Get Details menu item is enabled by default.
Example
This sample code illustates how within the host application, to prevent the end user from viewing details of the object selected in DB Browser pane of ELS-QB control.

Private Sub Form_Load()

' Some initalization code

............................

ELS_QBCtrl.GetDetailMItem False
............................

End Sub
 [Methods Index]

Syntax

object.CancelExecute

Description
Call this method to halt a query execution triggered via the Execute button of the ELS-QB toolbar. This may be used within the PreExecute event, giving the host application a chance to check the SQL text before executing the query.

Remarks
CancelExecute method returns True if operation was successful, otherwise False.

Note: Check the PreExecute and PostExecute events. Observe that the PreExecute event is fired before a query is executed, while PostExecute event is fired when the query execution is completed.

Example
For a sample code of CancelExecute usage see example of PreExecute event.

 [Methods Index]

Syntax

object.Import nIsAppend, sConnName, sDatabase, sTableName

nIsAppend
Specifies whether to select the Append to an existing table or the
Insert into a new table radio-button when initially displaying the Import dialog.
sConnName
A string that specifies the connection name to select in the Select

destination connection list-box of the Import dialog.
sDatabase
A string that specifies the database name to select in the Database

combo-box of the Import dialog.
sTableName
A string that specifies the name of the table in which the result of the
currently active query will be imported (i.e. the value of the Table name edit-box of the Import dialog).

Description
Call this method to display the Import dialog from ELS-QB component.

Remarks
Import method returns True if the Import dialog is displayed successfully, otherwise False.

Note: Check the section on Transferring Data Between Connections.

Example
For a sample code of Import usage see itmCmdImportAppend_Click() of frmELS_QB or itmCmdImportInsert_Click() in ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.GetRecordsetObj

Description
Call this method to obtain a pointer to a result recordset of a query currently opened in

ELS-QB component.

Remarks
GetRecordsetObj method returns the pointer to IUnknown interface of ELS-QB component’s recordset object or Null if no such object exists yet.

Note: The result recordset is created during the SQL statement execution process within ELS-QB component.
Example
For a sample code of GetRecordsetObj usage see FillFlexGrid() of frmMSFlexGrid in ELS_QBDemoVB project.

 [Methods Index]

Syntax

object.GetConnectionObj

Description
Call this method to obtain a pointer to an active connection object of ELS-QB component.

Remarks
GetConnectionObj method returns the pointer to IUnknown interface of a connection object

represented by the currently selected connection container in the Databases folder of the

ELS-QB component, or Null if no connection container is selected.

Example
This sample code demonstrates how to use the pointer to ELS-QB control’s internal connection object returned by GetConnectionObj() method to manipulate with some properties of it (e.g. set connection object’s timeout).

Private Sub SetConnTimeout(oConn As ADODB.Connection)

 If Not IsNull(oConn) Then
 oConn.ConnectionTimeout = 30
 End If

End Sub

' Some command handler

Private Sub itmCmdSetConnectionTimeout_Click()

 SetConnTimeout ELS_QBCtrl.GetConnectionObj

End Sub

[Methods Index]

Syntax

object.SetQueryTimeout nTimeout

nTimeout
Value of query timeout in seconds.

Description
Call this method to set the value of timeout for queries executed in ELS-QB component.

Remarks
SetQueryTimeout method returns True if a timeout value of a query is successfully set,

otherwise False.

Example
This sample code shows how to allow the end user to change ELS-QB component's query timeout.

Public Sub ChangeQueryTimeout(nTimeout As Long)

 If ELS_QBCtrl.GetQueryTimeout() <> nTimeout Then
 ELS_QBCtrl.SetQueryTimeout nTimeout

 End If

End Sub

 [Methods Index]

Syntax

object.GetQueryTimeout

Description
Call this method to retrieve the current value of timeout for queries executed in ELS-QB component.
Remarks
GetQueryTimeout method returns the current value of the query timeout of ELS-QB

component.
Example
For a sample code of GetQueryTimeout usage see the example of SetQueryTimeout
 [Methods Index]

Syntax

object.ShowColumnsToolbar bVisible

bVisible
Specifies the visibility of the Columns pane’s functions toolbar (0 or 1).

Description
Call this method to show / hide the Columns pane’s functions toolbar of ELS-QB component.

Remarks
ShowColumnsToolbar method returns True if the operation is successful, otherwise False.

Note: by default, if ShowColumnsToolbar() function is never called, the Columns pane’s functions toolbar of ELS-QB component is always visible.
Example
This sample code shows how to allow the end user to toggle visibility of the Columns pane's functions toolbar of ELS-QB control.

gbColPaneTBVisible = True
' Some command handler

Private Sub itmCmdToggleColPaneTBDisplay_Click()

 If ELS_QBCtrl.ShowColumnsToolbar(Not gbColPaneTBVisible) Then
 gbColPaneTBVisible = Not gbColPaneTBVisible

 End If

End Sub

 [Methods Index]

Syntax

object. ShowColumnsToolButton nButton, bVisible

nButton
Specifies the SQL functions toolbar button combination and may be any of the enumeration values of EQBShowColumnTools:

QB_CONCATSTR_FNBTN
= 1

QB_CONCATMSK_FNBTN
= 2,

QB_AGGREGATE_FNBTN
= 4,

QB_STRING_FNBTN

= 8,

QB_NUMERIC_FNBTN
= 16,

QB_DATEPART_FNBTN
= 32,

QB_DATENAME_FNBTN
= 64,

QB_TOCHAR_FNBTN

= 128,

QB_TONUM_FNBTN

= 256,

QB_TODATE_FNBTN

= 512,

QB_NULLCASE_FNBTN
= 1024,

QB_SIMPLECASE_FNBTN
= 2048
bVisible
Specifies the further visibility of the Columns pane’s SQL functions toolbar
button (0 or 1).

Description
Call this method to show / hide the specific combo-button combination in the SQL functions toolbar (the toolbar located at the bottom of the Column pane).

Note that if all combo-buttons are set to non-visible, then the whole SQL functions toolbar is invisible.

Remarks
ShowColumnsToolButton method returns True if the operation is successful, otherwise False.

Note: by default, if ShowColumnsToolButton () function is never called, the Columns pane’s
SQL functions toolbar button of ELS-QB component is always visible.
Example
This sample code shows how String functions combo-button of SQL functions toolbar is set to invisible.
Private Sub HideStringFunctionsBtn()

ELS_QBCtrl.ShowColumnsToolButton QB_STRING_FNBTN, False
End Sub

 [Methods Index]

Syntax

object.GetRecCount

Description
Call this method to retrieve the number of records returned by the query.

Remarks
GetRecCount method returns the number of records that the query has returned.

Example
This sample code shows how to use GetRecCount method to update contents of some display field situated in the status bar of the host application.

Private Sub ShowRecordsCount()

Dim sText

sText = "Total Records:" & ELS_QBCtrl.GetRecCount()

frmMDI.stBarMDI.Panels.Item(1).Text = sText

End Sub

 [Methods Index]

Syntax

object.ShowRecCount bShow

bShow
Specifies the visibility of the record counter display field (0 or 1).
Description
Call this method to show / hide record counter display field of ELS-QB control.

Remarks
ShowRecCount method returns True if the operation is successful, False otherwise.

Example
This sample code shows how to allow the end user to toggle counter display field of ELS-QB control.
gbShowRecCount = True
' Some command handler

Private Sub itmCmdToggleRecCountDisplay_Click()

 If ELS_QBCtrl.ShowRecCount(Not gbShowRecCount) Then
 gbShowRecCount = Not gbShowRecCount

 End If

End Sub

 [Methods Index]

Syntax

object.GetCharLinePos

Description
Call this method to get the character line of the cursor in the SQL pane editor of ELS-QB component.
Remarks
GetCharLinePos method returns the line number of the SQL pane editor cursor.

Example
This sample code shows how to use GetCharLinePos and GetCharColPos methods to inform the user of the position of cursor in the SQL pane editor of ELS-QB Control.

Private Sub ShowCursorPosition()

Dim sText

sText = " Line: " & ELS_QBCtrl. GetCharLinePos() & _

" Col: " & ELS_QBCtrl.GetCharColPos()

frmMDI.stBarMDI.Panels.Item(1).Text = sText

End Sub

 [Methods Index]

Syntax

object. GetCharColPos

Description
Call this method to get the character column of the cursor in the SQL pane editor of ELS-QB component.
Remarks
GetCharColPos method returns the column number of the SQL pane editor cursor position.

Example
For a sample code of GetCharColPos usage see the example of GetCharLinePos
 [Methods Index]

Syntax

object.GetQueryTitle

Description
Call this method to obtain the title of the currently open query in the ELS-QB control.

Remarks
GetQueryTitle method returns String containing the title of the currently open query.

Example
This sample code shows how to use GetQueryTitle method to inform the user of the title of the ELS-QB Control's currently active query. Query title is a string that has the following format: ConnectionName + " / " + QueryName
Private Sub ShowQueryTitle()

Dim sText

sText = ELS_QBCtrl.GetQueryTitle()

frmMDI.stBarMDI.Panels.Item(1).Text = sText

End Sub

 [Methods Index]

Syntax

object.GetActiveTab

Description
Call this method to obtain the index of the currently active tab in the ELS-QB control.

Remarks
GetActiveTab method returns the index of currently active tab of ELS-QB control.

Note: Possible index values are:

 0 - Query tab

 1 - Result tab

 of ELS-QB Control.
Example
For a sample code of GetActiveTab usage see the example of SetSQLEditorFont
 [Methods Index]

Syntax

object.ActivateTab nTab

nTab
Specifies which of query builder tabs will be the current active view, and may be any
of the enumeration values of EQBActiveTab:

QB_TAB_QUERY = 0,

QB_TAB_RESULT = 1

Description
Call this method to control current tab-active view.

Remarks
ActivateTab method returns True if the operation was successful, otherwise False.

[Methods Index]

Syntax

object. ShowResultTab bVisible

bVisible
Specifies the further visibility of the Result tab of ELS-QB Control.

Description
Call this method to show / hide the Result tab of ELS-QB Control (as well as the Execute button).

Remarks
ShowResultTab method returns True if the operation was successful, otherwise False.

Example

Private Sub Form_Load()

' Some initalization code

ELS_QBCtrl. ShowResultTab False
End Sub

 [Methods Index]

Syntax

object.SetSQLEditorFont lpszFontName, bItalic, bBold, lSize

lpszFontName
Specifies the typeface name of the font to be set.
bItalic

Specifies if the font to be set is Italic or not.
bBold

Specifies if the font to be set is Bold or not.
lSize

Specifies the size of the font to be set.
Description
Call this method to set the font of the SQL pane editor of ELS-QB control.

Remarks
SetSQLEditorFont method returns True if the operation is successful, False otherwise.

Example
This sample code shows how to set SQL pane or Result tab grid font of ELS-QB control.

Public Sub FontSetup()

 ' Set Cancel to True

 On Error GoTo ErrHandler

 Dim nActiveTab

 With frmMDI.cmnDlgFont

.CancelError = True
.Flags = cdlCFEffects Or cdlCFBoth

' Display the Font dialog box

.ShowFont

If ELS_QBCtrl.GetActiveTab() = 0 Then
ELS_QBCtrl.SetSQLEditiorFont .FontName, .FontItalic,

.FontBold, .FontSize

End If

If ELS_QBCtrl.GetActiveTab() = 1 Then
ELS_QBCtrl.SetGridFont .FontName, .FontItalic,

.FontBold, .FontSize,

.FontStrikethru, .FontUnderline, .Color

End If

End With

Exit Sub

ErrHandler:

' User pressed Cancel button

Exit Sub

End Sub

 [Methods Index]

Syntax

object.SetGridFont lpszFontName, bItalic, bBold, lSize, bStrikeOut, bUnderline, lColor

lpszFontName
Specifies the typeface name of the font to be set.
bItalic

Specifies if the font to be set is Italic or not.
bBold

Specifies if the font to be set is Bold or not.

lSize

Specifies the size of the font to be set.

bStrikeOut
Specifies if the font to be set is strikeout or not.
bUnderline
Specifies if the font to be set is underline or not.

lColor

Specifies the color of the font to be set.

Description
Call this method to set the font of the Result grid of ELS-QB control.

Remarks
SetGridFont method returns True if the operation is successful, False otherwise.

Example
For a sample code of SetGridFont usage see the example of SetSQLEditorFont
 [Methods Index]

Syntax

object.GetQueryText

Description
Call this method to obtain the SQL query text currently displayed in the SQL pane of ELS-QB control.

Remarks
GetQueryText method returns String containing the the text of the currently active SQL

statement displayed in the SQL pane.

Note: GetQueryText method is equivalent to GetSQLText.
Example
For a sample code of GetQueryText usage see the example of GetSQLText
[Methods Index]

Syntax

object.SetSQLText sSQLText

sSQLText
String representing query text.

Description
Call this method to set the query text or the content of the SQL pane of the ELS-QB control.

Remarks
SetSQLText method returns True if a query is open and operation successful,

otherwise False.

Note: SetSQLText method is equivalent to SetQueryText.

Example
For a sample code of SetSQLText usage see the example of SetQueryText
 [Methods Index]

Syntax

object.DoPageSetup lpszKey

lpszKey
A string representing the name of the registry key where page setup information
is stored.

Description
This method shows the Page Setup dialog of ELS-QB component with initial values loaded from the corresponding registry key specified by lpszKey.

Remarks
DoPageSetup method returns True if operation is successful and False otherwise.

Note: If the Page Setup dialog is OK-ed by user, the method stores input in the specified

 location in the system registry.
Example
This sample code shows how to call Page Setup dialog within ELS-QB component,
Private Sub itmFilePageSetUp_Click()

ELS_QBCtrl.DoPageSetup “Software\\MyCompany\\MyQBApp”

End Sub

 [Methods Index]

Syntax

object.DoIdle lCount

lCount
Specifies a number.
Description
Call this method to allow ELS-QB component to perform its idle task processing.

Remarks
DoIdle method returns True if operation is successful and False otherwise.

[Methods Index]

Syntax

object.SetResultEditMode bOn

bOn
Specifies the further editability of query results in the Result tab (0 or 1).
Description
Call this method to toggle edit mode of Result tab grid of ELS-QB control.

Remarks
SetResultEditMode method returns True if operation is successful.

Note: by default, if SetResultEditMode function is never called, the grid of Result tab is
non-editable. Also, this method is applicable only when the result grid is in ADO bound mode. For further information about ADO bound grid please see SetResultGridADOBound method.
Example
This sample code shows how to allow the end user to toggle edit mode of Result tab grid of ELS-QB control.

' Some command handler

Public Sub itmCommandToggleResulEditMode_Click()

 bEdit = ELS_QBCtrl.GetResultEditMode

 ELS_QBCtrl.SetResultEditMode Not bEdit

End Sub

 [Methods Index]

Syntax

object.GetResultEditMode

Description
Call this method to obtain the state of edititability of the Result tab grid of ELS-QB component.

Remarks
GetResultEditMode method returns True if the grid of Result tab is editable

and False otherwise.

Example
For a sample code of GetResultEditMode usage see the example of SetResultEditMode
 [Methods Index]

Syntax

object.SetRegistryKey lpszKey

lpszKey
String that specifies the registry key dedicated to store the page setup information,

as well as other information.

Description
Call this method to specify the name of a registry key which will contain the page setup and other information for ELS-QB component.

Remarks
SetRegistryKey method returns True.

Note: By default, if SetRegistryKey function is never called, ELS-QB component will contain an empty string as a key to store page setup information.

Example
This sample code shows how to use SetRegistryKey method within ELS-QB control:
Private Sub Form_Load()

ELS_QBCtrl.SetRegistryKey “Software\\MyCompany\\MyQBApp”

.....................

End Sub

 [Methods Index]

Syntax

object.GetOverStrike

Description
Call this method to obtain the state of edititability of the SQL pane editor of ELS-QB component.

Remarks
GetOverStrike method returns True if the SQL pane editor of ELS-QB control is in OverStrike
keyboard mode and False otherwise.
Note: In the OverStrike mode, text insertions overwrite any characters to the right of the caret.

Example
This sample code shows how to use GetOverStrike method to inform the user of the OverStrike mode of SQL pane editor of ELS-QB control.

Private Sub ShowOverStrikeMsg()

 Dim sMsg

 If ELS_QBCtrl.GetOverStrike Then
 sMsg = "OVR"

 Else

 sMsg = ""

 End If

 frmMDI.stBarMDI.Panels.Item(1).Text = sMsg

 End Sub

 [Methods Index]

Syntax

object.GenerateHTMLString bIsMailResult, bDescription, bSQL, bLogo,

 lpszHrefSite, lpszHrefText, lpszText

bIsMailResult
if True an extra empty line is appended at the start and end of ELS-QB generated output, so that the user may enter e-mail message before and after it.

bDescription
if True a section with the “Description” header will be included in the

ELS-QB generated output.

bSQL

if True a section with the “SQL Command” header will be included into

ELS-QB generated output below which the SQL command text will be

included.

bLogo

if True then ELS-QB generated output will include a logo as footnote.

lpszHrefSite
a String representing URL address of hyperlink reference included in

the logo.

lpszHrefText
a String string representing the text of hyperlink reference included in

the logo.

lpszText

a String representing additional text information to be include in

the logo.

Description
Call this method to o obtain the contents of the Result tab grid of ELS-QB control in a custom HTML format.

Remarks
GenerateHTMLString method returns a String, which represents the query result in an HTML
formatted text.

Example
This sample code shows how to generate the result of query as HTML string within the ELS-QB control.

Private Function itmCommandOutputAsHTML_Click() As String
Dim sURL, sURLText, sText

' a string containing some URL address, e.g.

sURL = "www.XYZSoft.com"

' a string containing the text of hyperlink reference, e.g.

sURLText = "XYZ"

' a string of additional information to be included in the

' generated output, may be some copyright informtion, e.g.

sText = "Copyright © 2001 XYZ Software, Inc."

Dim sHTMLOut

sHTMLOut = ELS_QBCtrl.GenerateHTMLString(False, True, True, True,

sURL, sURLText, sText)

' Do something with generated HTML string

End Function

[Methods Index]

Syntax

object.SetDBConnection sConnStr

sConnStr
String that specifies a connection string to be passed to ELS-QB.

Description
Call this method to set the connection string of the currently open connection node to the value of sConnStr.

Remarks
SetDBConnection method returns True if operation is successful, otherwise False.

Note: A connection node must be open in the Connection pane of ELS-QB control in order to be able to apply this function.
Example
This sample code shows how to set a new connection string for currently active connection in ELS-QB control:

Private Function SetConnString(sNewConnStr As String) As Boolean
 Dim sCurrCon

 SetConnString = False
 sCurrCon = ELS_QBCtrl.GetDBConnection

 If sCurrCon <> sNewConnStr Then
 SetConnString = ELS_QBCtrl.SetDBConnection(sNewConnStr)

 End If

End Function

 [Methods Index]

Syntax

object.GetDBConnection

Description
This method returns the connection string of the currently active connection in the

Databases folder of ELS-QB control’s Connection pane.

Remarks
GetDBConnection method returns a String containing the connection string of the

specified connection.

Example
For a sample code of GetDBConnection usage see the example of SetDBConnection
 [Methods Index]

Syntax

object.GetErrorMessage

Description
This method returns a String value containing the description of the last error.
Remarks
GetErrorMessage may be used as an alternative to the default error message reporting mechanism of the ELS-QB component. By using the ShowErrorMessages method to hide default error message box dialog, you may suppress or redirect the error message via GetErrorMessage to your custom error message window.
Example
For a sample code of usage, please check the itmCmdCheckSQLSyntax_Click subroutine of the frmELS_QB in ELS_QBDemoVB project.
 [Methods Index]

Syntax

object.ClearErrorMessage

Description
This method clears the internal error message variable of the ELS-QB component.
Remarks
ClearErrorMessage may be used together with the GetErrorMessage and ShowErrorMessages methods to implement a custom error reporting mechanism.
Example
For a sample code of usage, please check the itmCmdCheckSQLSyntax_Click subroutine of the frmELS_QB in ELS_QBDemoVB project.
 [Methods Index]

Syntax

object.ShowErrorMessages bShow

bShow

Specifies the visibility of the default error message reporting dialog (0 or 1).
Description
This method is used to hide the default error message reporting dialog, so that, one may implement a custom error reporting mechanism. Returns True if the function is successful, otherwise False.
Remarks
See also the GetErrorMessage and ClearErrorMessage methods.
Example
For a sample code of usage, please check the itmCmdCheckSQLSyntax_Click subroutine of the frmELS_QB in ELS_QBDemoVB project.
 [Methods Index]

Syntax

object.GetResultGridADOBound

Description
This method returns True if the grid in the Result tab-view is set to ADO bound mode, and False otherwise
Remarks
ADO bound grid will result into faster performance of the query result display. Also, note that the query result can be made directly editable only when this grid is in ADO bound mode.
Example
For a sample code of usage, please check the itmCmdADOBound_Click subroutine of the frmELS_QB in ELS_QBDemoVB project.
 [Methods Index]

Syntax

object.SetResultGridADOBound bOn
bOn
specifies the value (1 or 0) to turn on or off the ADO bound mode of the grid
Description
This method is used to turn on/off the ADO bound mode of the Result tab-view grid. Returns True if the method is successful, otherwise False.
Remarks
ADO bound grid will result into faster performance of the query result display. Also, note that the query result can be made directly editable only when this grid is in ADO bound mode.
Example
For a sample code of usage, please check the itmCmdADOBound_Click subroutine of the frmELS_QB in ELS_QBDemoVB project.
 [Methods Index]

Syntax

object.NewQueryX nQType

nQType
specifies the query type via the EQBQTYPE enumeration values
Description
This method is an extended version of the NewQuery method, which will create an instance of an empty query builder window based on the specified query type. Possible query types are defined by the EQBQTYPE enumeration:

QB_TYPE_SELECT

= 1

QB_TYPE_INSERT

= 2

QB_TYPE_INSERTVALUES
= 3

QB_TYPE_DELETE

= 4

QB_TYPE_UPDATE

= 5

QB_TYPE_MAKETABLE
= 6

Remarks
Returns True if the method is successful, otherwise False.
Note: See the INSERT, UPDATE, DELETE Queries section for more details.

Example
For a sample code of usage, please check respectively the following subroutines of the frmELS_QB in ELS_QBDemoVB project:

itmNewSelectQuery_Click

itmNewInsertQuery_Click

itmNewInsertValuesQuery_Click

itmNewDeleteQuery_Click

itmNewUpdateQuery_Click

itmNewMakeTableQuery_Click
 [Methods Index]

Syntax

object.ShowDBObjectsX nShowComb, sPattern

nShowComb
specifies the database objects to show and may be a value defined as

a combination of the following enumeration:

QB_DVW_ALL

= 1

QB_DVW_DBOONLY

= 2

QB_DVW_TABLES

= 4

QB_DVW_VIEWS

= 8

QB_DVW_PROCS

= 16

QB_DVW_FUNCTIONS

= 32

sPattern
specifies a prefix or suffix pattern to filter out the database objects by name.

This pattern must have the following syntax form:

pttrn_1,pf_1; pttrn_2,pf_2; ... ; pttrn_N,pf_N
or

*\pttrn_1,pf_1; pttrn_2,pf_2; ... ; pttrn_N,pf_N
Where pttrn_j are any desired string patterns and pf_j equals 0 if the corresponding pattern is intended to be a prefix pattern, or 1 if suffix pattern. The “*” notation means all objects defined by the first argument, while the “\” is the set subtraction notation. Note that each pattern is a pair of pattern string and prefix-suffix indicator separated by a semi-colon.
Description
This method may be used to restrict the visibility of database objects in the DB Browser based on the category defined by the first argument and the pattern specification defined by the second argument.
Remarks
Returns True if the method is successful, otherwise False.
Example
For example, the following call will display only table objects of the backend database that have names that start with the “OB_” or end with the “_TBL” strings:

ELS_QBCtrl.ShowDBObjectsX QB_DVW_TABLES, "OB_,0;_TBL,1"

The following call will make the DB Browser to show all database objects that do not start with the “SYS_” string:

ELS_QBCtrl.ShowDBObjectsX QB_DVW_ALL, "*\SYS_,0"
For a more detailed usage of this ShowDBObjectsX method please check the itmShowDBObjects_Click subroutine of the frmELS_QB in ELS_QBDemoVB project.
 [Methods Index]

Syntax

object.dBASEExport

Description
This method initializes and retruns a dBASEExport object, if successful, otherwise it returns null.
Remarks
See dBASEExport object for further details.
Example
For a sample of usage, check the DoExportDBase subroutine of the frmExportStatus module in the ELS_QBDemoVB project.
 [Methods Index]

Syntax

object.TextExport

Description
This method initializes and returns a TextExport object, if successful, otherwise it retruns null.
Remarks
See TextExport object for further details.
Example
For a sample of usage, check the DoExportText subroutine of the frmExportStatus module in the ELS_QBDemoVB project.
 [Methods Index]

Syntax

object.XMLExport

Description
This method initializes and returns an XMLExport object, if successful, otherwise it returns null.
Remarks
See XMLExport object for further details.
Example
For a sample of usage, check the DoExportXML subroutine of the frmExportStatus module in the ELS_QBDemoVB project.
 [Methods Index]

Events

Event PreExecute()

PreExecute event of ELS-QB component is fired when the user tiggers the execution of a query within ELS-QB component (for example via the Execute toolbar button). This event is the first thing that occurs in the internal query processing chain of ELS-QB component. It occurs before the SQL text is validated against the back-end database and before the internal SQL parsing.

Such a behavior of PreExecute event will give the user a chance to manipulate the SQL text in the PreExecute event, which in turn allows the implementation of custom mechanisms for running parameterized queries in the host application.

The following VB pseudo code illustrates the possible usage of this feature of ELS-QB component:

' In the sample, the frmParam is a VB form in the host application

' via which the user will enter the query parameter value.

' In an ideal situation, one may define mechanisms for labels and

' text-boxes in such VB form to be dynamically created depending on

' the number of parameter variables for the parameterized query

Private Sub ELS_QBCtrl_PreExecute()

Dim sSQL As String
Dim nPos As Integer
Dim sFldName As String

' get the current SQL text to check for ?-symbols
sSQL = ctrlELSQB.GetSQLText
nPos = InStr(1, sSQL, "?")
If nPos > 0 Then
' calculate word length and using Mid VB-function
' set sFldName to the word following ?-symbol

' ...

' pass this parameter name to the frmParam to update label
frmParam.lblFieldName = sFldName
frmParam.Show vbModal, Me

If frmParam.nIsOKed Then
' if the OK button is clicked

sSQL = Left(sSQL, nPos)

' use the form entry value
sSQL = sSQL + frmParam.txtValue

ctrlELSQB.SetQueryText sSQL

' since CancelExecute was not called, by default this

' event will be followed by the execution of the query
Else

'the user clicked Cancel button, so cancel the query execution ctrlELSQB.CancelExecute

End If

End If

End Sub

[Events Index]

Event PostExecute()

PostExecute event of ELS-QB component is fired when the user initiates the execution of a query within ELS-QB component and it is the last thing that occurs in the internal query processing chain of ELS-QB component. It occurs after ELS-QB component executes a query allowing a way to provide a custom event handling behavior.

The following VB pseudo code illustrates a way of possible usage of this feature of ELS-QB component:

Private Sub ELS_QBCtrl_PostExecute()

 Dim nCount

 nCount = ELS_QBCtrl.GetRecCount()

 frmMDI.stBarMDI.Panels.Item(1).Text = "Total: " & nCount & " records"

End Sub

[Events Index]

Event OnNotifyStatus()

OnNotifyStatus event of ELS-QB component is fired during the export of a query result. In the loop of the export process at every lRecs processed a status notification event raised passing the count of records processed to the host application. So if lRecs is 0, no status notification event will be raised, if lRecs is 1, then status notification event will be raised at every processed record, if lRecs is 50, then status notification event will be raised at every 50 processed records.

The following VB pseudo code illustrates a way of possible usage of this feature of ELS-QB component:

Public Sub NotifyStatus(lRecs As Long, bContinue As Boolean)
Dim strRecCount As String

If bContinue Then

strRecCount = CStr(lRecs) & " records processed..."

txtStatus.Caption = strRecCount

Else

strRecCount = "Total exported records: " & CStr(lRecs)

txtStatus.Caption = strRecCount

cmdCancel.Caption = "Close"

m_bCanceled = True
End If

DoEvents

End Sub

[Events Index]

Constants

Enum EQBCommandType - command enumeration
In the ELS-QB component the following constants are defined as command identifiers used by DoCommand() and QueryStatus() methods:

QB_CMD_UNDO

= 1,

QB_CMD_REDO

= 2,

QB_CMD_CUT

= 3,

QB_CMD_COPY

= 4,

QB_CMD_PASTE

= 5,

QB_CMD_SELECTALL

= 6,

QB_CMD_FIND

= 7,

QB_CMD_REPLACE

= 8,

QB_CMD_PRINT

= 9,

QB_CMD_PRINT_PREVIEW

= 10,

QB_CMD_PAGE_SETUP

= 11

See also: Pane IDs.

[Methods Index]

Enum EQBPane - Pane enumeration
In the ELS-QB component the following constants are defined as pane identifiers used by ShowPane() and IsPaneVisible() methods:

QB_RELATION_PANE

= 1

QB_COLUMNS_PANE

= 2

QB_SQL_PANE

= 3

QB_CONNECTION_PANE
= 4

QB_DBBROWSER_PANE
= 5

See also: Command IDs.

[Methods Index]

Enum EShowHidePanes - Toolbar's SHOW/HIDE enumeration
In the ELS-QB component the following constants are defined as toolbar button identifiers used by ShowToolButton() methods:

QB_CONNPANE_BTN

= 1

QB_DVWPANE_BTN

= 2

QB_RELPANE_BTN

= 3

QB_COLPANE_BTN

= 4

QB_SQLPANE_BTN

= 5

QB_CHKSQL_BTN

= 6

QB_EXECUTE_BTN

= 7

QB_STOP_BTN

= 8

QB_ALL_BTNS

= 9

[Methods Index]

Enum EQBShowDBObjects – DB Browser object type enumeration
In the ELS-QB component the following constants are defined as DB Browser object type identifiers used by ShowDBObjects()methods:

QB_DVW_ALL

= 1

QB_DVW_DBOONLY

= 2

QB_DVW_TABLES

= 4

QB_DVW_VIEWS

= 8

QB_DVW_PROCS

= 16

QB_DVW_FUNCTIONS

= 32

 [Methods Index]

Enum EQBShowColumnTools – SQL functions toolbar’s SHOW/HIDE enumeration
In the ELS-QB component the following constants are defined as SQL functions toolbar button identifiers used by ShowColumnsToolButton() methods:

QB_CONCATSTR_FNBTN
= 1

QB_CONCATMSK_FNBTN
= 2

QB_AGGREGATE_FNBTN
= 4

QB_STRING_FNBTN

= 8

QB_NUMERIC_FNBTN
= 16

QB_DATEPART_FNBTN
= 32

QB_DATENAME_FNBTN
= 64

QB_TOCHAR_FNBTN

= 128

QB_TONUM_FNBTN

= 256

QB_TODATE_FNBTN

= 512

QB_NULLCASE_FNBTN
= 1024

QB_SIMPLECASE_FNBTN
= 2048

 [Methods Index]

Enum EQBActiveTab – Query and Result tab enumeration
In the ELS-QB component the following constants are defined as tab identifiers used by

ActivateTab() methods:

QB_TAB_QUERY
= 0

QB_TAB_RESULT
= 1

 [Methods Index]

Enum ESQLCmdType – SQL command type enumeration
In the ELS-QB component the following constants are defined as SQL command type identifiers used by EnableSQLCommand() methods:

QB_SQL_INSERT
= 1

QB_SQL_UPDATE
= 2

QB_SQL_DELETE
= 4

QB_SQL_CREATE
= 8

QB_SQL_ALTER
= 16

QB_SQL_DROP
= 32

QB_SQL_EXEC
= 64

QB_SQL_ALL

= 128

[Methods Index]

Enum EQBTextExportFormatTypeEnum – Text Export format type enumeration
In the ELS-QB component the following constants are defined as Text Export format type identifiers used by FormatType property of TextExport objects:

QB_EXPORT_FIXED

= 1

QB_EXPORT_DELIMITED
= 2

[Methods Index]

Enum EQBdBASEExportDBVersion – dBASE version enumeration
In the ELS-QB component the following constants are defined as dBASE version identifiers used by Export method of dBASEExport objects:

QB_EXPORT_dBASE_III
= 3

QB_EXPORT_dBASE_IV
= 4

QB_EXPORT_dBASE_5
= 5

[Methods Index]

Enum EQBXMLExportFlags – XML Export flag enumeration
In the ELS-QB component the following constants are defined as XML Export flag identifiers used by Export method of XMLExport objects:

QB_EXPORT_XML_ALL

= 0

QB_EXPORT_XML_EXCLUDEHDR

= 1

QB_EXPORT_XML_EXCLUDEROOT

= 2

QB_EXPORT_XML_EXCLUDEHDRROOT
= 3

[Methods Index]

Enum EQBQTYPE – Query Type enumeration
In the ELS-QB component the following constants are defined as Query Type indentifiers:

QB_TYPE_SELECT

= 1
QB_TYPE_INSERT

= 2

QB_TYPE_INSERTVALUES
= 3
QB_TYPE_DELETE

= 4
QB_TYPE_UPDATE

= 5

QB_TYPE_MAKETABLE
= 6

[Methods Index]

Enum EQBDataType – Data Type enumeration
In the ELS-QB component the following constants are defined as Data Type indentifiers:

adEmpty

= 0

adSmallInt

= 2

adInteger

= 3

adSingle

= 4

adDouble

= 5

adCurrency

= 6

adDate

= 7

adBSTR

= 8

adIDispatch

= 9

adError

= 10

adBoolean

= 11

adVariant

= 12

adIUnknown

= 13

adDecimal

= 14

adTinyInt

= 16

adUnsignedTinyInt
= 17

adUnsignedSmallInt
= 18

adUnsignedInt

= 19

adBigInt

= 20

adUnsignedBigInt
= 21

adFileTime

= 64

adGUID

= 72

adBinary

= 128

adChar

= 129

adWChar

= 130
adNumeric

= 131

adUserDefined

= 132

adDBDate

= 133

adDBTime

= 134

adDBTimeStamp
= 135

adChapter

= 136

adPropVariant

= 138

adVarNumeric

= 139

adVarChar

= 200

adLongVarChar

= 201

adVarWChar

= 202

adLongVarWChar
= 203

adVarBinary

= 204

adLongVarBinary
= 205

adArray

= 8192
[Methods Index]

Objects

TextExport

This object handles all text format exports
Properties:

FormatType

This property sets or gets the text format type, and may be any of the enumeration values of EQBTextExportFormatTypeEnum:

QB_EXPORT_FIXED

= 1,

QB_EXPORT_DELIMITED
= 2

where,
QB_EXPORT_FIXED is for text format with fixed width,

QB_EXPORT_DELIMITED is for text format with variable delimeted (default value).
FieldDelimiter

This property sets or gets the field delimiter, applicable only in the variable delimited format case, with default value being the comma character (i.e. ",").

TextQualifier
This property sets or gets the text qualifier for fields, applicable only in the variable delimited format case, with default value being none (i.e. no text qualifier delimiters around text fields).

DateDelimiter

This property sets or gets the date delimiter, applicable in both fixed width and variable delimited format cases, with default value being "/".

TimeDelimiter

This property sets or gets the time delimiter, applicable in both fixed width and variable delimited format cases, with default value being ":".

DateFormat

This property sets or gets the date format, applicable in both fixed width and variable delimited format cases, possible values may be combined from the following format symbols:

M (or m)

specifies the month in number (no leading zeros),

MM (or mm)
specifies the month in number (with leading zeros),

D (or d)

day number (no leading zeros),

DD (or dd)
day number (with leading zeros),

YY (or yy)

year number (two digits with leading zeros),

YYYY (or yyyy)
year number (four digits with leading zeros),

S (or s)

second (no leading zeros),

SS (or ss)

second (with leading zeros),

N (or n)

minute (no leading zeros),

NN (or nn)
minute (with leading zeros),

H (or h)

hour (no leading zeros),

HH (or hh)
hour (with leading zeros),

DecimalSymbol

This property sets or gets the decimal symbol, applicable in both fixed width and variable delimited format cases, with default value being ".".

IncludeFieldnames

This property sets or gets the flag whether to include the fieldnames as the first row of the outputted text, with default being FALSE (i.e. do not include fieldnames),

Methods:

Open() As Boolean

This method opens the recordset of the query and fills the InFields collection, it returns TRUE if successful, otherwise FALSE
Close() As Boolean

This method closes the recordset of the query in the TextExport object, it returns TRUE if successful, otherwise FALSE,
Export(sFilename As String, lRecs As Long) As Long

This method will export the result of the currently open query to the format specified by the current TextExport object. It will return -1 if errors occurred or the number of records outputted, if successful. The string variable sFilename specifies the path and filename of the output file (created in text mode), while lRecs specifies the number, such that at every lRecs of records outputted, a status notification is triggered. The default value is 0, which means no status notification is triggered until at the end of export completion.

InFields() As InFields

This method returns an InFields collection of TextExport object.

OutFields() As OutFields

This method returns an OutFields collection of TestExport objects.

CancelExport() As Boolean

This method will terminate the execution of an Export method of TextExport object.

IsRunning() As Boolean
This method returns True if ELS-QB component is running an export process, otherwise False.

The following VB pseudo code illustrates a possible usage of this feature of TextExport object of ELS-QB component:

Dim oExport As ELS_QBLib.TextExport

Dim i As Integer

Dim bRet As Boolean

Dim lRecs As Long

Set oExport = ELS_QBCtrl.TextExport

oExport.FormatType = QB_EXPORT_FIXED

oExport.DateFormat = "MMDDYYYY"

oExport.IncludeFieldnames = True

bRet = oExport.OutFields.Clear()

oExport.Open

For i=1 To oExport.InFields.Count

If oExport.OutFields.Add() <> -1 Then

oExport.OutFields.Item(i-1).Name = oExport.InFields.Item(i-1).Name

oExport.OutFields.Item(i-1).Value = oExport.InFields.Item(i-1).Value

oExport.OutFields.Item(i-1).Length = oExport.InFields.Item(i-1).Length

End If

Next i

' export records without any status notifications until the end

lRecs = oExport.Export(sPath + sFilename, 0)

If lRecs <> -1 Then

MsgBox Str(lRecs) + " records exported!"

Else

MsgBox "Export failed!"

End If

[Methods Index]

InField

Represents a field in the InFields collection.

Properties:

DataType

This property gets the data type of the field, read-only property ranging through an enumeration EQBDataType similar to the ADO data type enumeration,

Name

This property gets the name of the actual data field (i.e. the column name in the query, may be the alias of a fieldname as defined in the query statement), read-only property.

Length

This property gets the string length equivalent to the field length (read-only property).

Value

This property gets the value of the field (converted to string), read-only property.

[Methods Index]

OutField

Represents a field in the OutFields collection.

Properties:

Name

This property sets the name of the output field.
Length

This property sets the string length of the output field.

Value

This property sets the value of the output field.
[Methods Index]

dBASEExport

This object handles the dBASE file format export.

Methods:

Export(sFilename As String, nDBVersion As Long) As Long
This method will export the result of the currently open query to a dBASE file format. It will return -1 if errors occurred or the number of records outputted, if successful. The string variable sFilename specifies the path and filename of the output file, while nBDVersion is the dBASE version, which may be one of the
EQBdBASEExportDBVersion enumeration values:

QB_EXPORT_dBASE_III
= 3,

QB_EXPORT_dBASE_IV
= 4,

QB_EXPORT_dBASE_5
= 5 ,

respectively for dBASE III, dBASE IV and dBASE 5.

CancelExport() As Boolean

This method will terminate the execution of an Export method of dBASEExport object.

IsRunning() As Boolean
This method returns True if ELS-QB component is in process of Export method execution of dBASEExport object, otherwise False.

The following VB pseudo code illustrates a possible usage of this feature of dBASEExport object of ELS-QB component:

Private Sub itmCmddBASEExport_Click()

Dim oExport As ELS_QBLib.dBASEExport

Dim lRecs As Long

Set oExport = ELS_QBCtrl.dBASEExport

lRecs = oExport.Export strFileName, nVersion
End Sub

[Methods Index]

XMLExport

This object handles XML format export.

Methods:

Export(sFilename As String, nFlag As Long) As Long

This method will export the result of the currently open query to an XML format, which consists of a document header, data root tag, record tags, and the tags for each field in the record. It will return -1 if errors occurred or the number of records outputted, if successful. The string variable sFilename specifies the path and filename of the output file, while nFlag may be one of the EQBXMLExportFlags enumeration values:

QB_EXPORT_XML_ALL

= 0,

QB_EXPORT_XML_EXCLUDEHDR

= 1,

QB_EXPORT_XML_EXCLUDEROOT

= 2,

QB_EXPORT_XML_EXCLUDEHDRROOT
= 3

QB_EXPORT_XML_ALL - include both XML document header and the data root tags

QB_EXPORT_XML_EXCLUDEHDR - do not include the XML document header

QB_EXPORT_XML_EXCLUDEROOT - do not include the data root parent tag

QB_EXPORT_XML_EXCLUDEHDRROOT - do not include both the XML header and the data root parent tag

CancelExport() As Boolean

This method will terminate the execution of an Export method of XMLExport object.

IsRunning() As Boolean
This method returns True if ELS-QB component is in process of Export method execution of XMLExport object, otherwise False.

[Methods Index]

Collections

InFields

Contains all the InField objects. This is a collection of all fields in the input, essentially defined by the query builder's SQL statement in the SQL pane.

Properties:

Count() AS Long

Indicates the number of fields in the collection.

Methods:

Item(index As Long) As InField

Indicates an InField member of a collection by ordinal number, index is a

zero-based index of the field in the query.

[Methods Index]

OutFields

Contains all the OutField objects. This is a collection of all fields that must be outputted, the items of the collection may be created via add / remove methods.

Properties:

Count() As Long
Indicates the number of fields in the collection.

Methods:

Item(long index) As OutField

Indicates a OutField member of a collection by ordinal number, index is a zero-based index of the output field.

Add() As Long

This method adds an empty OutField item, returns the index if successful,
otherwise –1.

Remove(long index) As Boolean

This method removes the OutField item at index position, returns True is successful, otherwise False.

Clear() As Boolean

This method clears the whole OutFields collection, returns True if successful, otherwise False.

[Methods Index]

Visual C++ Programmer’s Reference

The ELS-QB ActiveX component can be used in any programming environment that supports OLE custom controls, including the following:

· Visual C++ 6.0 (and above)

· Visual Basic 6.0

· Visual Basic .NET

· C# .NET

· Visual InterDev

· Microsoft Access97 (and above)

The purpose of this section is to aid the Visual C++ programmer on the usage of the external call functions of ELS-QB ActiveX component. For user convenience ELS-QB ActiveX component is distributed along with a sample project, which uses ELS-QB ActiveX component. It is called ELS_QBDemo and is written in Visual C++. The source code of ELS_QBDemo project illustrates the usage for almost all methods available with ELS-QB ActiveX component.

Sample code illustrations that are included with most of the following methods and events are excerpts from ELS_QBDemo project. Where m_QBCtrl is a member variable of CELS_QBDemoView and is an instance of ELS-QB ActiveX component.

This Visual C++ programmer's Reference describes the following features of ELS-QB ActiveX component available to Visual C++ programmer:

· Methods of ELS-QB ActiveX,

BSTR
GetConnectionName ()

BOOL
SetConnectionName (LPCTSTR sConnName)

BOOL
NewDBConnection ()

BOOL
OpenDBConnection (LPCTSTR sConnName)

BSTR
GetConnection (LPCTSTR sConnName)

BOOL
SetConnection (LPCTSTR sConnName, LPCTSTR sConnStr)

BOOL
OpenConnection (LPCTSTR sDummyConnName, LPCTSTR sConnStr)

BOOL
CloseConnection ()

BOOL
SaveConnection ()

BOOL
RemoveConnection (LPCTSTR sConnName)

BSTR
GetQueryName ()

BOOL
SetQueryName (LPCTSTR sQryName)

BOOL
NewQuery ()

BOOL
SaveQuery ()

BSTR
GetSQLText ()

BOOL
SetQueryText (LPCTSTR sQryText)

BOOL
OpenQuery (LPCTSTR sConn, LPCTSTR sQry)

BOOL
CloseQuery (BOOL bWithCancel)

BOOL
OpenSelectedQuery ()

BOOL
RemoveQuery (LPCTSTR sConnName, LPCTSTR sQryName)

BOOL
ShowQueryFilename (BOOL bShow)

BOOL
CheckSQLSyntax ()

BOOL
EnableSQLCommands (long nCmdType)

BOOL
ShowToolButton (long nButton, BOOL bShow)

BOOL
ShowPane (long nPane, BOOL bShow)

BOOL
ShowDBObjects (long nShowComb)

void
SetStoragePath (LPCTSTR sPath)

BSTR
GetStoragePath ()

BOOL
IsPaneVisible (long nPane)

BOOL
UpdatePane (long nPane)

BOOL
SetFontType (LPCTSTR sFontType, long lFontSize)

long
DoCommand (long nCommand)

BOOL
QueryStatus (long nCommand)

BOOL
GetModified ()

BOOL
CanExecute ()

void
Execute ()
BOOL
CanStop ()

void
Stop ()

BOOL
IsRunning ()

BOOL
SetMessageBoxTitle (LPCTSTR sText)

BOOL
ConnectionEdit (BOOL bEnable)

BOOL
GetDetailMItem (BOOL bEnable)

BOOL
CancelExecute ()

BOOL
Import (BOOL nIsAppend, LPCTSTR sConnName,

LPCTSTR sDatabase, LPCTSTR sTableName)

LPUNKNOWN
GetRecordsetObj ()

LPUNKNOWN
GetConnectionObj ()

BOOL
SetQueryTimeout (long nTimeout)

long
GetQueryTimeout ()

BOOL
ShowColumnsToolbar (BOOL bVisible)

BOOL
ShowColumnsToolButton (long nButton, BOOL bVisible)

long
GetRecCount ()

BOOL
ShowRecCount (BOOL bShow)

long
GetCharLinePos ()

long
GetCharColPos ()

BSTR
GetQueryTitle ()

long
GetActiveTab ()

BOOL
ActivateTab (long nTab)
BOOL
ShowResultTab (BOOL bVisible)
BOOL
SetSQLEditorFont (LPCTSTR lpszFontName, bool bItalic,

bool bBold, long lSize)

BOOL
SetGridFont (LPCTSTR lpszFontName, BOOL bItalic, BOOL bBold, long lSize,

BOOL bStrikeOut, BOOL bUnderline, long lColor)

BSTR
GetQueryText ()

BOOL
SetSQLText (LPCTSTR sSQLText)

BOOL
DoPageSetup (LPCTSTR lpszKey)

BOOL
DoIdle (long lCount)

BOOL
SetResultEditMode (BOOL bOn)

BOOL
GetResultEditMode ()

BOOL
SetRegistryKey (LPCTSTR lpszKey)
BOOL
GetOverStrike ()
BSTR
GenerateHTMLString (BOOL bIsMailResult, BOOL bDescription,

 BOOL bSQL, BOOL bLogo, LPCTSTR lpszHrefSite,

 LPCTSTR lpszHrefText, LPCTSTR lpszText)

BOOL
SetDBConnection (LPCTSTR sConnStr)
BSTR
GetDBConnection ()
BSTR
GetErrorMessage ()
void
ClearErrorMessage ()
BOOL
ShowErrorMessage (long bShow)
BOOL
GetResultGridADOBound ()

BOOL
SetResultGridADOBound (long bOn)

BOOL
NewQueryX (long nQType)
BOOL
ShowDBObjectsX (long nShowComb, LPCTSTR sPattern)
CdBASEExport
dBASEExport ()
CTextExport
TextExport ()

CXMLExport
XMLExport ()

· Events of ELS-QB ActiveX,

PreExecute ()
PostExecute ()
OnNotifyStatus ()
· Constants of ELS-QB ActiveX,

· Objects of ELS-QB ActiveX,

TextExport
InField
OutField
dBASEExport
XMLExport
· Collections of ELS-QB ActiveX,

InFields

OutFields
Methods

Syntax:

BSTR GetConnectionName ();

Return Value:
BSTR string object containing the name of the connection node that is currently active or open in the Connection pane.

Note: The returned string may be empty.

Remarks:

Call this method to obtain the name of the connection node that is currently active or open in the Connection pane of ELS-QB control.

Example:

For a sample code of GetConnectionName() usage see the example of the SetConnectionName method.
[Methods Index]

Syntax:

BOOL SetConnectionName (LPCTSTR sConnName);

Return Value:
TRUE if the Connection pane is visible and a connection node is active and the renaming of this connection node is successful, otherwise returns FALSE.

Parameters:

sConnName

Specifies the new name to be used to rename the currently active connection node.

Remarks:

Call this method to rename the currently active or open connection node.
Example:

This sample code shows how to rename the currently active connection in ELS-QB component:

BOOL CELS_QBDemoView::RenameConnection(LPCTSTR lpstrNewName)

{

CString strCurrName = m_QBCtrl.GetConnectionName();

if(strCurrName.IsEmpty())

// Noactive connection exists

return false;

if(strCurrName != lpstrNewName)

return m_QBCtrl.SetConnectionName(lpstrNewName);

return true;

}

 [Methods Index

]

Syntax:

BOOL NewDBConnection ();

Return Value:
TRUE if the Connection pane of ELS-QB control is enabled and FALSE otherwise.

Remarks:

This method calls the New DB Connection window from ELS-QB component, so that the user may create a new database connection in the Databases folder at run-time.

Example:

This sample code shows how to invoke New DB Connection window that when OK-ed will create a new database connection and make it the active database connection upon creation.

void CELS_QBDemoView::OnFileNewDBConnection()

{

// this will invoke the New DB Connection window allowing

// new database connection creation at runtime
m_QBCtrl.NewDBConnection();

}

 [Methods Index

]

Syntax:

BOOL OpenDBConnection (LPCTSTR sConnName);

Return Value:
TRUE if the connection is opened successfully, otherwise returns FALSE.
Parameters:

sConnName

Specifies the name of an existing connection to open.

Remarks:

Call this method to open an existing connection specifying only the connection name.

Example:

This sample code shows how to open specified connection in ELS-QB component:

BOOL CELS_QBDemoView::OpenConnection(LPCTSTR lpstrConnName)

{

CString strCurrName = m_QBCtrl.GetConnectionName();

if(!lpstrConnName->IsEmpty()

 && strCurrName != lpstrConnName)

return m_QBCtrl.OpenDBConnection(lpstrConnName);

return true;

}

 [Methods Index

]

Syntax:

BSTR GetConnection (LPCTSTR sConnName);

Return Value:
BSTR string object containing the connection string of the specified connection.

Parameter:

sConnName

Specifies the name of the connection in question.

Remarks:

This method returns the connection string of the connection specified in the sConnName parameter.

Example:

For a sample code of GetConnection() usage see the example of SetConnection()
[Methods Index

]

Syntax:

BOOL SetConnection (LPCTSTR sConnName, LPCTSTR sConnStr);

Return Value:
TRUE if the connection is set successfully, otherwise returns FALSE.

Parameters:

sConnName

Specifies the name of the connection to be passed to ELS-QB.

sConnStr

Specifies a connection string to be passed to ELS-QB.

Remarks:

Call this method to pass a connection string to a connection object before instantiation. This function may be used to set the connection string before opening or instantiating a connection (see OpenConnection).

Example:

This sample code shows how to change the connection string of the specified connection at run time in ELS-QB component:

.........................

CString strConn1 = _T(“Connection1”),

strConn2 = _T(“Connection2”),

strConnStr1 = m_QBCtrl.GetConnection(strConn1);

ChangeConnString(strConn2, strConnStr1);

.........................

BOOL CELS_QBDemoView::ChangeConnString(CString& strConn,

CString& strConnStr)

{

CString strCurrConnStr;

strCurrConnStr = m_QBCtrl.GetConnection(strConn);

return m_QBCtrl.SetConnection(strConn, strConnStr);

}
[Methods Index

]

Syntax:

BOOL OpenConnection (LPCTSTR sDummyConnName, LPCTSTR sConnStr);

Return Value:
TRUE if the internal connection string variable is well defined and the connection has been opened successfully, otherwise the returned value is FALSE

Parameters:

sDummyConnName

Pointer to a string representing default connection name.

sConnStr

Pointer to a string representing the connection string. This string may be the empty string, in which case the SetConnection function must be used to define the proper connection string. Otherwise, sConnStr must contain a proper connection string.

Remarks:

Call this method to define and open a new dynamic connection specified by the sConnStr connection string.

Example:

The following code demonstrates how to create, save and close connection dynamically in ELS-QB component:

.........................

CString strConnName = _T(“NWConn”),

strConnStr;

// Sample connection string

strConnStr = _T(“Provider=SQLOLEDB.1;”)
_T(“Persist Security Info=False;”)

_T(“User ID=sa;”)

_T(“Initial Catalog=Northwind;”)

_T(“Data Source=SERVER1”);

if(m_QBCtrl.OpenConnection(strConnName, strConnStr))

{

m_QBCtrl.SaveConnection();

m_QBCtrl.CloseConnection();

}

..............................

[Methods Index

]

Syntax:

BOOL CloseConnection ();

Return Value:
TRUE if operation is successfully, otherwise FALSE.

Remarks:

Call this method to close the currently active or open connection.

Example:

For a sample code of CloseConnection() usage see the example of OpenConnection()
[Methods Index

]

Syntax:

BOOL SaveConnection ();

Return Value:
TRUE if currently a connection is active or open and the save operation is successful, otherwise FALSE.

Remarks:

Call this method to save the currently active or open connection.

Example:

For a sample code of SaveConnection() usage see the example of OpenConnection()

 [Methods Index

]

Syntax:

BOOL RemoveConnection (LPCTSTR sConnName);

Return Value:
TRUE if the connection is found and operation is successful, otherwise FALSE.

Parameters:

sConnName

Pointer to a string representing the connection name.

Remarks:

Call this method to remove an existing connection by specifying the connection node’s name.

Example:

The following code demonstrates how to remove the connection created in

OpenConnection()

 example.

.........................

DeleteConnection(_T(“NWConn”));

.........................

BOOL CELS_QBDemoView::DeleteConnection (LPCTSTR lpstrConn)

{

CString strConnStr = m_QBCtrl.GetConnection(lpstrConn);

if(!strConnStr.IsEmpty())

return m_QBCtrl.RemoveConnection(lpstrConn);

return false;

}

[Methods Index

]

Syntax:

BSTR GetQueryName ();

Return Value:
BSTR string object containing the name of the currently open query.
Remarks:

Call this method to obtain the name of the currently open query in the ELS-QB control.

Example:

For a sample code of GetQueryName() usage see the example of SetQueryName()
[Methods Index

]

Syntax:

BOOL SetQueryName (LPCTSTR sQryName);

Return Value:
TRUE if a query is open and the operation successful, otherwise FALSE.

Parameters:

sQryName

Pointer to a string representing query name.

Remarks:

Call this method to rename the currently open query in the ELS-QB control.

Example:

This sample code shows how to rename currently active query in ELS-QB component:

BOOL CELS_QBDemoView::RenameQuery(LPCTSTR lpstrNewName)

{

CString strCurrName = m_QBCtrl.GetQueryName();

if(strCurrName.IsEmpty())

return false;

if(strCurrName != lpstrNewName)

return m_QBCtrl.SetQueryName(lpstrNewName);

return true;

}

[Methods Index

]

Syntax:

BOOL NewQuery ();

Return Value:
TRUE if the Connection pane of ELS-QB is enabled, otherwise returns FALSE.

Remarks:

This method creates and selects upon creation a new query, having default node label, under the currently selected connection container in the Databases folder of ELS-QB component’s Connection pane.

Note:
the default label of a newly created query may be renamed at any time after its creation.

This function is retained in version 2.5 for backward compatibility purpose. Please use the NewQueryX method instead.

Example:

This sample code shows how to create programmatically a new query in ELS-QB component:

void CELS_QBDemoView::OnFileNewquery()

{

CString strConnName = _T(“NWConn”);

if(!m_QBCtrl.OpenDBConnection(strConnName))

return;

if(m_QBCtrl.NewQuery())

{

CString strQryName = _T(“Orders”);

m_QBCtrl.SetQueryName(strQryName);

m_QBCtrl.SetQueryText(_T(“SELECT * FROM Orders”));

if(m_QBCtrl.CheckSQLSyntax())

m_QBCtrl.SaveQuery();

else

m_QBCtrl.RemoveQuery(strConnName,

 strQryName);

}

}

[Methods Index

]

Syntax:

BOOL SaveQuery ();

Return Value:
TRUE if the query is stored successfully. If for some reason ELS-QB component is unable to save currently open query, then the return value is FALSE.

Remarks:

Call this method to save the currently open query into the storage file of the ELS-QB component corresponding to the currently active connection container in the Connection pane.

Example:

For a sample code of SaveQuery() usage see the example of NewQuery()
[Methods Index

]

Syntax:

BSTR GetSQLText ();

Return Value:
BSTR string object containing the text of the SQL statement from the SQL pane.

Note: The returned string may be empty.

Remarks:

Call this method to obtain the SQL query text currently displayed in the SQL pane of ELS-QB control.

Example:

This sample code shows how to programmatically change the SQL text of a sample query created in NewQuery()

 example:

CString strConnName = _T("NWConn");

CString strQryName = _T("Orders");

if(m_QBCtrl.OpenQuery(strConnName, strQryName))

{

CString strSQL, strOldSQL;

strSQL = strOldSQL= m_QBCtrl.GetSQLText();

strSQL.Replace(_T("Orders"), _T("Customers"));

if(m_QBCtrl.SetQueryText(strSQL))

{

if(m_QBCtrl.CheckSQLSyntax())

m_QBCtrl.SetQueryName(_T("Customers"));

else

m_QBCtrl.SetQueryText(strOldSQL);

}

m_QBCtrl.SaveQuery();

m_QBCtrl.CloseQuery(TRUE);

}

[Methods Index

]

Syntax:

BOOL SetQueryText (LPCTSTR sQryText);

Return Value:
TRUE if a query is open and operation successful, otherwise FALSE.

Parameters:

sQryText

Pointer to a string representing query text.

Remarks:

Call this method to set the query text or the content of the SQL pane of the ELS-QB control.

Example:

For a sample code of SetQueryText () usage see the example of GetSQLText()
 [Methods Index

]

Syntax:

BOOL OpenQuery (LPCTSTR sConn, LPCTSTR sQry);

Return Value:
TRUE if the query has been opened successfully, otherwise FALSE.

Parameters:

sConn

Pointer to a string representing connection name.

sQry

Pointer to a string representing query name.

Remarks:

Call this method to open specified query within the ELS-QB component.

Note: To open query successfully the specified sConn and sQry must exist.

Example:

For a sample code of OpenQuery () usage see the example of GetSQLText()

 [Methods Index

]

Syntax:

BOOL CloseQuery (BOOL bWithCancel);

Return Value:
TRUE if the query is closed successfully, otherwise FALSE.

Parameter:

bWithCancel

Boolean value that specifies whether the save confirmation window will be shown with an extra “Cancel” button or not.

Remarks:

Call this method to close the query currently selected in the Databases folder of ELS-QB component’s Connection pane, with an option to save or discard changes made.

Example:

For a sample code of CloseQuery () usage see the example of GetSQLText()

 [Methods Index

]

Syntax:

BOOL OpenSelectedQuery ();

Return Value:
TRUE if the query has been opened successfully, otherwise FALSE.

Remarks:

Call this method to open the query currently selected in the Databases folder of ELS-QB control’s Connection pane.

[Methods Index

]

Syntax:

BOOL RemoveQuery (LPCTSTR sConnName, LPCTSTR sQryName);

Return Value:
TRUE if the query has been removed successfully, otherwise FALSE.

Parameters:

sConnName

Pointer to a string representing connection name.

sQryName

Pointer to a string representing query name
Remarks:

Call this method to remove a specified query from the currently active project’s storage files.

Note: To remove the query successfully the specified sConnName and sQryName must exist.

Example:

For a sample code of RemoveQuery () usage see the example of NewQuery()
 [Methods Index

]

Syntax:

BOOL ShowQueryFilename (BOOL bShow);

Return Value:
TRUE if the operation is successful, FALSE otherwise.

Parameters:

bShow

Specifies the visibility of the filename display (0 or 1).

Remarks:

Call this method to show / hide the query filename display.
Note: If this method is never called, the query filename is shown by default.

Example:

This sample code shows how to allow the end user to toggle the filename display field of ELS-QB control.
void CELS_QBDemoView::OnInitialUpdate()

{

............................

............................

m_bShowQueryFileName = TRUE;

m_QBCtrl.ShowQueryFilename(m_bShowQueryFileName);

}

// some command handler

void CELS_QBDemoView::OnCommandToggleQueryFileNameDisplay()

{

if(m_QBCtrl.ShowQueryFilename(!m_bShowQueryFileName))

m_bShowQueryFileName = !m_bShowQueryFileName;

}

[Methods Index

]

Syntax:

BOOL CheckSQLSyntax ();

Return Value:
TRUE if the syntax of the SQL statement of the currently open query is successfully verified against the back-end database, otherwise FALSE.

Remarks:

Call this method to trigger validation of the SQL statement of the query opened within ELS-QB control.

Note: If ELS-QB component fails to check successfully SQL syntax of a statement, it will deactivate Relations and Columns panes after a corresponding message prompt indicating the syntax error.
Example:

For a sample code of CheckSQLSyntax () usage see the example of NewQuery()
[Methods Index

]

Syntax:

BOOL EnableSQLCommands (long nCmdType);

Return Value:
TRUE if the operation is successful, otherwise FALSE.

Parameters:

nCmdType

Specifies the combination of SQL command types defined by the enumeration values of ESQLCmdType:

QB_SQL_INSERT
= 1,

QB_SQL_UPDATE
= 2,

QB_SQL_DELETE
= 4,

QB_SQL_CREATE
= 8,

QB_SQL_ALTER
= 16,

QB_SQL_DROP
= 32,
QB_SQL_EXEC
= 64,
QB_SQL_ALL

= 128

Remarks:

By default ELS-QB component allows to execute only SELECT query, but in many cases it is required to execute other DML, as well as DDL SQL commands. Call this method to enable the execution of various types of SQL commands.

Example:

This sample code shows how to enable all DML queries.

void CMyQBView::OnInitialUpdate()

{

............................

m_QBCtrl.EnableSQLCommands(QB_SQL_INSERT |

QB_SQL_UPDATE |

QB_SQL_DELETE);

............................

}

 [Methods Index

]

Syntax:

BOOL ShowToolButton (long nButton, BOOL bShow);

Return Value:
TRUE if the operation is successful, otherwise FALSE.

Parameters:

nButton

Specifies the ELS-QB component’s toolbar button combination and may be any of the following values:

QB_CONNPANE_BTN
= 1

QB_DVWPANE_BTN
= 2

QB_RELPANE_BTN
= 3

QB_COLPANE_BTN
= 4

QB_SQLPANE_BTN
= 5

QB_CHKSQL_BTN
= 6

QB_EXECUTE_BTN
= 7

QB_STOP_BTN
= 8

QB_ALL_BTNS

= 9

bShow

Specifies the further visibility of the selected button combination.

Remarks:

Call this method to show / hide the specific button combination in the ELS-QB control’s toolbar (the toolbar located on left side of the Connection pane). Note that the QB_ALL_BTNS combination will show / hide the toolbar itself.

This method may be used to hide or deactivate a certain functionality of the ELS-QB for either security or simplification purpose. For example, the developer may want to hide the Connection pane and the toolbar button corresponding to the toggling of show/hide of this pane (e.g. QB_CONNPANE_BTN). In this way the end-user may not have access to the Connection pane of the ELS-QB control.

Note: If this method is never called, all toolbar buttons are shown by default.

Example:

This sample code shows how to allow the end user to toggle in view a specified button of ELS-QB control’s toolbar.
void CELS_QBDemoView::CELS_QBDemoView ()

{

............................

............................

m_bRelPaneBtnVisible = TRUE;

}

// Some command handler

void CELS_QBDemoView::OnCommandToggleRelPaneBtnInView()

{

if(m_QBCtrl.ShowToolButton(QB_RELPANE_BTN,

!m_bRelPaneBtnVisible))

m_bRelPaneBtnVisible = ! m_bRelPaneBtnVisible;

}

 [Methods Index

]

Syntax:

BOOL ShowPane (long nPane, BOOL bShow);

Return Value:
TRUE if the pane toggle operation is performed successfully and FALSE otherwise

Parameters:

nPane

Specifies the ELS-QB component’s pane to be toggled and may be any of the following values:

QB_RELATION_PANE

= 1

QB_COLUMNS_PANE

= 2

QB_SQL_PANE

= 3

QB_CONNECTION_PANE
= 4

QB_DBBROWSER_PANE
= 5

bShow

Specifies the further visibility of the pane

Remarks:

Call this method to show / hide the specific pane.

ELS-QB component’s interface consists of five panes that may be toggled into a view individually with the only constrain that at any given moment at least one of the following panes:

Relations Pane,

Columns Pane,

SQL Pane

is visible.

Note: If this method is never called, then all panes are shown by default.

Example:

This sample code shows how to toggle the SQL pane’s visibility:
void CELS_QBDemoView::OnViewSql()

{

// This will toggle ELS_QB Control's SQL pane on/off.

m_QBCtrl.ShowPane(QB_SQL_PANE,

!m_QBCtrl.IsPaneVisible(QB_SQL_PANE));

}

 [Methods Index

]

Syntax:

BOOL ShowDBObjects (long nShowComb);

Return Value:
TRUE if the operation is successful, otherwise FALSE.

Parameters:

nShowComb

Specifies the combination of object categories of the DB Browser pane defined by the values of the enumeration EQBShowDBObjects:

QB_DVW_ALL

= 1

QB_DVW_DBOONLY

= 2

QB_DVW_TABLES

= 4

QB_DVW_VIEWS

= 8

QB_DVW_PROCS

= 16

QB_DVW_FUNCTIONS

= 32
Remarks:

This method may be used to show / hide certain categories of the DB Browser pane.

QB_DVW_ALL

show all tables, views, procedures and Functions

(default),

QB_DVW_DBOONLY
show all objects, owned by current user,

QB_DVW_TABLES
show all objects under Tables folder,

QB_DVW_VIEWS
show all objects under Views folder,

QB_DVW_PROCS
show all objects under Procedures folder,

QB_DVW_FUNCTIONS show all objects under Functions folder,

For example, the developer for security may want to hide the Tables folder and within this folder restrict the listing of objects owned by dbo. Then he should use QB_DVW_DBOONLY + QB_DVW_TABLES parameter.
Note: If this method is never called, then all objects are shown by default.

This method is retained in version 2.5 for backward compatibility. Please use the extended ShowDBObjectsX method instead.
Example:

This sample code shows how to programmatically hide Views, Procedures and Functions folders in the DB Browser pane and show only the Tables.
void CMyQBView::OnInitialUpdate()

{

............................

m_QBCtrl.ShowDBObjects(QB_DVW_TABLES);

............................

}

 [Methods Index

]

Syntax:

void SetStoragePath (LPCTSTR sPath);

Return Value:
None.

Parameter:
sPath
Pointer to a string that specifies the absolute storage path value. If NULL, it removes all connections of ELS-QB component.

Remarks:

This method sets the directory path of ELS-QB component storage for the instance of QB-object.

Example:

This sample code shows how the SetStoragePath() and GetStoragePath() methods are used in ELS_QBDemo project during a new project creation.

void CELS_QBDemoView::OnFileNew()

{

// this will open New Project dialog and

// then, if OK-ed, will create a new project

CNewProjectDlg dlg;

if(dlg.DoModal() == IDOK)

{

if(!CloseCurrentProject())

{

AfxMessageBox(IDS_NEW_PROJECT_CANCELED,

MB_ICONWARNING);

return;

}

if(m_QBCtrl.GetStoragePath() != _T(“”))

m_QBCtrl.SetStoragePath(NULL);

GetParentFrame()->ActivateFrame();

if(CreateProject(dlg.m_strDirLocation,

dlg.m_strProjectName, dlg.m_strStoragePath))

m_QBCtrl.SetStoragePath(dlg.m_strStoragePath);

}

}

 [Methods Index

]

Syntax:

BSTR GetStoragePath ();

Return Value:
BSTR string object containing the storage path of the currently active project.

Remarks:

Call this method to obtain the storage path of the currently active ELS-QB project.

Example:

For a sample code of GetStoragePath () usage see the example of SetStoragePath ()
 [Methods Index

]

Syntax:

BOOL IsPaneVisible (long nPane);

Return Value:
TRUE if the specified pane is visible within ELS-QB component, FALSE otherwise.

Parameters:

nPane

Specifies the ELS-QB component’s pane to check the visibility of. May have one of the following values:

QB_RELATION_PANE

= 1

QB_COLUMNS_PANE

= 2

QB_SQL_PANE

= 3

QB_CONNECTION_PANE
= 4

QB_DBBROWSER_PANE
= 5

Remarks:

Call this method to determine if the specified pane is currently visible within ELS-QB component.

Example:

For a sample of IsPaneVisible () usage see the example of ShowPane()
 [Methods Index

]

Syntax:

BOOL UpdatePane (long nPane);

Return Value:
TRUE if the specified pane is updated successfully, FALSE otherwise.

Parameters:

nPane

Specifies the ELS-QB component’s pane to update, may have one of the following values:

QB_RELATION_PANE

= 1

QB_COLUMNS_PANE

= 2

QB_SQL_PANE

= 3

QB_CONNECTION_PANE
= 4

QB_DBBROWSER_PANE
= 5

Remarks:

Call this method to update or refresh the specified pane of ELS-QB component.
Example:

This sample code shows how programmatically to refresh a specified pane within ELS-QB control:

.............................

if(m_QBCtrl.IsPaneVisible(QB_RELATION_PANE))

m_QBCtrl.UpdatePane(QB_RELATION_PANE);

.............................
 [Methods Index

]

Syntax:

BOOL SetFontType (LPCTSTR sFontType, long lFontSize);

Return Value:
TRUE if the specified font is successfully set and FALSE otherwise.

Parameters:

sFontType

Pointer to a string that specifies the typeface name of the font.

lFontSize

Specifies font’s size value.

Remarks:

Call this method to set the current font of ELS-QB component’s SQL pane.
Example:

Here is an exerpt from ELS_QBDemo project illustrating the usage of SetFontType() method of ELS-QB component.

void CELS_QBDemoView::OnViewFont()

{

// this will open the common dialog for fonts

// and applies new settings to the font of the

// SQL pane, Result tab or the OUTPUT window of

// the ELS_QB Control

CFontDialog dlg;

if(dlg.DoModal() == IDOK)

if(!m_QBCtrl.SetFontType(dlg.GetFaceName(),

 dlg.GetSize()/10))

AfxMessageBox(_T("Not applicable"));

}

 [Methods Index

]

Syntax:

long DoCommand (long nCommand);

Return Value:

Zero if the command has been executed successfully, otherwise non-zero.

Parameter:

nCommand

Identifies the ELS-QB component command to invoke (see Remarks).

Remarks:

The ELS-QB component supports following command IDs:

QB_CMD_UNDO

= 1,

QB_CMD_REDO

= 2,

QB_CMD_CUT

= 3,

QB_CMD_COPY

= 4,

QB_CMD_PASTE

= 5,

QB_CMD_SELECTALL

= 6,

QB_CMD_FIND

= 7,

QB_CMD_REPLACE

= 8,

QB_CMD_PRINT

= 9,

QB_CMD_PRINT_PREVIEW
= 10,

QB_CMD_PAGE_SETUP
= 11

Call this member function to execute the command specified by ELS-QB component command IDs.

Example:

Here is an exerpt from ELS_QBDemo project illustrating the usage of DoCommand() method of ELS-QB component.

void CELS_QBDemoView::OnEditUndo()

{

// this will trigger the Undo command on the SQL pane

m_QBCtrl.DoCommand(QB_CMD_UNDO);

}

 [Methods Index

]

Syntax:

BOOL QueryStatus (long nCommand);

Return Value:
TRUE if the command is applicable and FALSE otherwise.

Parameter:

nCommand

Identifies the command to query status of (see Remarks).
Remarks:

The ELS-QB component supports a variety of commands that can be executed against the current contents of the SQL pane or Result window. These include commands to format the text, cut and paste, select or find and more.

The commands are executed by calling the DoCommand() method and passing to it one of the following command IDs of ELS-QB component:

QB_CMD_UNDO

= 1,

QB_CMD_REDO

= 2,

QB_CMD_CUT

= 3,

QB_CMD_COPY

= 4,

QB_CMD_PASTE

= 5,

QB_CMD_SELECTALL

= 6,

QB_CMD_FIND

= 7,

QB_CMD_REPLACE

= 8,

QB_CMD_PRINT

= 9,

QB_CMD_PRINT_PREVIEW

= 10,

QB_CMD_PAGE_SETUP

= 11

Call this method passing the same command IDs to determine whether the command is valid in the current state of the ELS-QB component, for further conditional execution of the command.

The results returned by the method may also be used to update your application's user interface.

Example:

Here is an exerpt from ELS_QBDemo project illustrating the usage of QueryStatus() method of ELS-QB component.

void CELS_QBDemoView::OnUpdateEditUndo(CCmdUI* pCmdUI)

{

pCmdUI->Enable(m_QBCtrl.QueryStatus(QB_CMD_UNDO));

}

 [Methods Index

]

Syntax:

BOOL GetModified ();

Return Value:
TRUE if currently selected query has been modified, otherwise FALSE.

Remarks:

Call this method to determine if currently selected query has been modified.

Example:

Here is an exerpt from ELS_QBDemo project illustrating the usage of GetModified() method of ELS-QB component.

void CELS_QBDemoView:: OnUpdateFileSave(CCmdUI* pCmdUI)

{

pCmdUI->Enable(m_QBCtrl.GetModified());

}

[Methods Index

]

Syntax:

BOOL CanExecute ();

Return Value:
TRUE if ELS-QB component has an open query and no pending SQL command execution process exists, otherwise FALSE.

Remarks:

Call this method to determine if ELS-QB component is able to execute an opened query.

Example:

For a sample code of CanExecute() usage see the example of Execute() method.
 [Methods Index

]

Syntax:

void Execute ();

Return Value:
None.

Remarks:

Call this method to execute the SQL statement contained in the SQL pane of ELS-QB component.

Example:

This sample code illustrates, how programmatically to execute a currently active query in the ELS-QB component.

void CELS_QBDemoView::ExecuteCurrentlyActiveQuery()

{

// this will check the current state of ELS-QB control

if(m_QBCtrl.CanExecute())

// this will execute the query contained

// in the SQL pane of the ELS-QB control

m_QBCtrl.Execute();

}

 [Methods Index

]

Syntax:

BOOL CanStop ();

Return Value:
TRUE if ELS-QB component a pending SQL command execution process exists and can be stopped, otherwise FALSE.

Remarks:

Call this method to determine if ELS-QB component can stop an open running query.

Example:

For a sample code of CanStop usage see the example of Stop method.
 [Methods Index

]

Syntax:

void Stop ();

Return Value:
None.

Remarks:

Call this method to stop any pending SQL statement execution process that is running in the ELS-QB component.

Example:

This sample code illustrates, how programmatically to stop a pending query execution in the ELS-QB component.

void CELS_QBDemoView::StopQueryExecution()

{

// this will check the current state of ELS-QB control

if(m_QBCtrl.IsRunning() && m_QBCtrl.CanStop())

// this will stop execution of the query contained

// in the SQL pane of ELS-QB control

m_QBCtrl.Stop();

}

 [Methods Index

]

Syntax:

BOOL IsRunning ();

Return Value:
TRUE if ELS-QB component is in process of SQL command execution, otherwise FALSE.

Remarks:

Call this method to determine if ELS-QB component is currently in process of SQL command execution.

Example:

For a sample code of IsRunning() usage see the example of Stop() method.
 [Methods Index

]

Syntax:
BOOL SetMessageBoxTitle (LPCTSTR sText);

Return Value:
TRUE if the operation is successful, otherwise FALSE.

Parameters:

sText

Pointer to a string that specifies the title for message box.

Remarks:

Call this method to set the title of message box that are prompt from the ELS-QB component. For example, you may set this title to your host application’s name.

See also the ShowErrorMessage, GetErrorMessage and ClearErrorMessage methods.

Example:

This sample code illustates how to set the title of message box in the OnInitialUpdate() function of the host application.

void CELS_QBDemoView::OnInitialUpdate()

{

// some initalization code

............................

m_QBCtrl.SetMessageBoxTitle(_T("MyQBApp"));

............................

}

 [Methods Index

]

Syntax:
BOOL ConnectionEdit (BOOL bEnable);

Return Value:
TRUE if the operation is successful, otherwise FALSE.

Parameters:

bEnable

Specifies whether to enable / disable (e.g. 1 / 0) the connection editing.

Remarks:

Call this method to enable / disable editing or manipulating the connection objects. For example, if we call this function with bEnable = 0, then the popup menu that displays when the user right-mouse-button clicks over the nodes in the Connection pane, will be restricted in the following manner:

· When the user right-mouse-button clicks on the Databases folder, the popup menu is displayed with the New menu item disabled.

· When the user right-mouse-button clicks on any connection node, the popup menu is displayed with only the New and Open menu items enabled (all other menu items will be disabled).

This feature may be used in the particular case, when the host application essentially needs only one connection, and which remains constant throughout the application execution time.

Note: If this method is never called, the connection editing is enabled by default.

Example:

This sample code illustates how in the OnInitialUpdate() of the host application to prevent end user of performing edit operations discribed earlier in this reference:

void CELS_QBDemoView::OnInitialUpdate()

{

// some initalization code

............................

m_QBCtrl.ConnectionEdit (FALSE);

............................

}

 [Methods Index

]

Syntax:
BOOL GetDetailMItem (BOOL bEnable);

Return Value:
TRUE if the operation is successful, otherwise FALSE.

Parameters:

bEnable

Specifies whether to enable / disable (e.g. 1 / 0) the GetDetails menu item in the popup menu triggered from the DB Browser pane.

Remarks:

Call this method to enable / disable the GetDetails menu item in the popup menu triggered from the DB Browser pane. So that, the end-user will not be able to acquire detailed information about the internal structure of any database.

Note: If this method is never called, the GetDetails menu item is enabled by default.

Example:

This sample code illustates how in the OnInitialUpdate() of the host application to prevent end user from viewing details of the objects selected in DB Browser pane of ELS-QB control.

void CELS_QBDemoView::OnInitialUpdate()

{

// some initalization code

............................

m_QBCtrl.GetDetailMItem (FALSE);

............................

}

[Methods Index

]

Syntax:
BOOL CancelExecute ();

Return Value:
TRUE if the operation is successful, otherwise FALSE.
Remarks:

Call this method to halt a query execution triggered via the Execute button of the ELS-QB toolbar. This may be used within the PreExecute event, giving the host application a chance to check the SQL text before executing the query.

Note: Check the PreExecute and PostExecute events. Observe that the PreExecute event is fired before a query is executed, while PostExecute event is fired when the query execution is completed.

Example:

For a sample code of CancelExecute () usage see the example of PreExecute() event.
 [Methods Index

]

Syntax:
BOOL Import (
BOOL nIsAppend,

LPCTSTR sConnName,

LPCTSTR sDatabase,

LPCTSTR sTableName);

Return Value:
TRUE if the Import dialog is displayed successfully, otherwise FALSE.

Parameters:

nIsAppend

Specifies whether to select the Append to an existing table or the Insert into a new table radio-button in the Import dialog when initially displayed.

sConnName

Pointer to a string that specifies the connection name to select in the Select destination connection list-box of the Import dialog.
sDatabase

Pointer to a string that specifies the database name to select in the Database Name combo-box of the Import dialog.
sTableName

Pointer to a string that specifies the name of the table in which the result of the currently active query will be imported (i.e. the value of the Table name edit-box of the Import dialog).

Remarks:

Call this method to display the Import dialog from ELS-QB component.

Note that the arguments SConnName, sDatabase, sTableName could be NULL.

See also the section on Transferring Data Between Connections.

Example:

This sample code shows how to invoke Import dialog window within ELS-QB control that if not canceled will perform import operation in accordance with the end user data input.

void CELS_QBDemoView::OnCommandImport()

{

// this will invoke Import Dialog window

m_QBCtrl.Import(m_bAppendToTable, NULL, NULL, NULL);

}
 [Methods Index

]

Syntax:

LPUNKNOWN GetRecordsetObj ();

Return Value:
The pointer to IUnknown interface of ELS-QB component’s recordset object or NULL if no such object exists.

Remarks:

Call this method to obtain a pointer to a result recordset of a query currently opened in ELS-QB component.

Note:
The result recordset is created during the SQL statement execution process within ELS-QB component.
Example:

This sample code demonstrates how to use the pointer for ELS-QB control’s internal recordset object returned by GetRecordsetObj() method to complete the task of filling some FlexGrid object in the host application with the results of ELS-QB control’s current query.
void CELS_QBDemoView:: FillFlexGrid (_RecordsetPtr lpRst)

{

if(lpRst == NULL)

return;

...................

// some data processing here

...................

}

..................

..................

void CELS_QBDemoView::OnCommandFillflexgrid()

{

// this will open a FlexGrid window and then will fill

// it with the current recordset of ELS-QB control
FillFlexGrid(m_QBCtrl.GetRecordsetObj());

}

[Methods Index

]

Syntax:

LPUNKNOWN GetConnectionObj ();

Return Value:
The pointer to IUnknown interface of a connection object represented by the currently selected connection node in the Databases folder of the ELS-QB component, or NULL if no connection node selected.

Remarks:

Call this method to obtain a pointer to an active connection object of ELS-QB component.

Example:

This sample code demonstrates how to use the pointer for ELS-QB control’s internal connection object returned by GetConnectionObj() method to manipulate some properties (i.e. set connection object’s timeout).
void CELS_QBDemoView:: SetConnTimeout(_ConnectionPtr pConn)

{

if(pConn == NULL)

return;

pConn-> ConnectionTimeout = 30;
}

..................

..................

void CELS_QBDemoView::OnCommandSetConnectionTimeout()

{

SetConnTimeout(m_QBCtrl.GetRecordsetObj());

}

[Methods Index

]

Syntax:

BOOL SetQueryTimeout (long nTimeout);

Return Value:
TRUE if a timeout value for query execution is successfully set, otherwise FALSE.

Parameter:
nTimeout
Value for query execution timeout given in seconds.

Remarks:

Call this method to set the value of timeout for queries execution in ELS-QB component.

Note: by default query timeout value in ELS-QB component is 30 seconds.

Example:

This sample code shows how to allow end user to change ELS-QB component’s query execution timeout.

void CELS_QBDemoView::ChangeQueryTimeout(long nTimeout)

{

if(m_QBCtrl.GetQueryTimeout() != nTimeout)

m_QBCtrl.SetQueryTimeout(nTimeout);

}

 [Methods Index

]

Syntax:

long GetQueryTimeout ();

Return Value:
The current value of the query excution timeout of ELS-QB component.

Remarks:

Call this method to obtain the current value of timeout for queries execution in ELS-QB component.

Example:

For a sample code of GetQueryTimeout () usage see the example of SetQueryTimeout()
 [Methods Index

]

Syntax:

BOOL ShowColumnsToolbar (BOOL bVisible);

Return Value:
TRUE if the operation is successful, FALSE otherwise.

Parameter:
bVisible

Specifies the visibility of the Columns pane’s functions toolbar (0 or 1).

Remarks:

Call this method to show / hide the Columns pane’s functions toolbar of ELS-QB component.

Note: By default, If the ShowColumnsToolbar() function is never called, the Columns pane’s functions toolbar of ELS-QB component will be visible.

Example:

This sample code shows how to allow the end user to toggle visibility of the Columns pane’s functions toolbar of ELS-QB control.

void CELS_QBDemoView::CELS_QBDemoView()

{

............................

m_bColPaneTBVisible = TRUE;

}

//some command handler

void CELS_QBDemoView::OnCommandToggleColumnsPaneTBDisplay()

{

if(m_QBCtrl.ShowQueryFilename(!m_bColPaneTBVisible))

m_bColPaneTBVisible = ! m_bColPaneTBVisible;

}

 [Methods Index

]

Syntax:

BOOL ShowColumnsToolButton (long nButton, BOOL bVisible);

Return Value:
TRUE if the operation is successful, otherwise FALSE.

Parameters:

nButton

Specifies the SQL functions toolbar button combination based on the enumeration values of EQBShowColumnTools:

QB_CONCATSTR_FNBTN
= 1

QB_CONCATMSK_FNBTN
= 2,

QB_AGGREGATE_FNBTN
= 4,

QB_STRING_FNBTN

= 8,

QB_NUMERIC_FNBTN
= 16,

QB_DATEPART_FNBTN
= 32,

QB_DATENAME_FNBTN
= 64,

QB_TOCHAR_FNBTN

= 128,

QB_TONUM_FNBTN

= 256,

QB_TODATE_FNBTN

= 512,

QB_NULLCASE_FNBTN
= 1024,

QB_SIMPLECASE_FNBTN
= 2048

bVisible

Specifies the further visibility of the selected button combination.

Remarks:

Call this method to show / hide the specific combo-button combination in the SQL functions toolbar (the toolbar located at the bottom of the Columns pane).

Note that if all combo-buttons are set to non-visible, then the whole SQL functions toolbar becomes invisible.

Note: If this method is never called, all toolbar buttons are shown by default.

Example:

This sample code shows how the String functions combo-button of SQL functions toolbar is set to invisible.
void CMyQBView::HideStringFunctionsBtn()

{

m_QBCtrl. ShowColumnsToolButton(QB_STRING_FNBTN, false)

}

 [Methods Index

]

Syntax:

long GetRecCount ();

Return Value:
The number of records that the query has returned.

Remarks:

Call this method to obtain the number of records returned by the query.

Example:

This sample code shows how to use GetRecCount method to update contents of some display field situated in the Status bar of the host application.

void CELS_QBDemoView::OnShowRecordsIndicator(CCmdUI* pCmdUI)

{

CString str;

str.Format(_T("Records: %ld"), m_QBCtrl.GetRecCount());

pCmdUI->SetText(str);

}

 [Methods Index

]

Syntax:

BOOL ShowRecCount (BOOL bShow);

Return Value:
TRUE if the operation is successful, FALSE otherwise.

Parameter:
bShow

Specifies the visibility of the record counter display field (0 or 1).

Remarks:

Call this method to show / hide record counter display field of ELS-QB component.

Note: By default the record counter display field of ELS-QB component is always visible.

 Example:

This sample code shows how to allow the end user to toggle counter display field of ELS-QB control.
void CELS_QBDemoView::OnInitialUpdate()

{

............................

............................

m_bShowRecCount = TRUE;

}

// some command handler

void CELS_QBDemoView::OnCommandToggleRecCountDisplay()

{

if(m_QBCtrl.ShowRecCount(!m_bShowRecCount))

{

m_bShowRecCount = ! m_bShowRecCount;

// refresh the contents of the result grid

m_QBCtrl.Execute();

}

}

[Methods Index

]

Syntax:

long GetCharLinePos ();

Return Value:
The line number of the SQL pane editor cursor’s position.

Remarks:

Call this method to get the line of the cursor in the SQL pane editor of ELS-QB component.

Example:

This sample code shows how to use GetCharLinePos() and GetCharColPos() methods to update contents of some display field, showing the position of cursor in the SQL pane editor of ELS-QB control, situated in the Status bar of host application.

void CELS_QBDemoView::OnShowCursorPosition(CCmdUI* pCmdUI)

{

CString str;

if(m_QBCtrl.GetActiveTab() == 0)

{

// the Query tab is currently active

str.Format(_T("Line: %ld\tCol: %ld"),

m_QBCtrl.GetCharLinePos(),

m_QBCtrl.GetCharColPos());

}

pCmdUI->SetText(str);

}

[Methods Index

]

Syntax:

long GetCharColPos ();

Return Value:
The column number of the SQL pane editor cursor’s position.

Remarks:

Call this method to get the character column of the cursor in the SQL pane editor of ELS-QB component.

Example:

For a sample code of GetCharColPos () usage see the example of GetCharLinePos ()
 [Methods Index

]

Syntax:

BSTR GetQueryTitle ();

Return Value:
BSTR string object containing the title of the currently open query.

Remarks:

Call this method to obtain the title of the currently open query in the ELS-QB control.

Example:

This sample code shows how to use GetQueryTitle method to update contents of some display field, showing the title of the ELS-QB Control’s currently active query.

Note that the query title is a string that has the followin format:

 ConnectionName + “ / ” + QueryName
void CELS_QBDemoView::OnShowQueryTitle(CCmdUI* pCmdUI)

{

pCmdUI->SetText(m_QBCtrl.GetQueryTitle());

}

 [Methods Index

]

Syntax:

long GetActiveTab ();

Return Value:
The index of currently active tab of ELS-QB control.

Remarks:

Call this method to obtain the index of the currently active tab in the ELS-QB control.

Note: Correspondence of indexes is as follows:

0 - Query tab

1 – Result tab

Example:

For a sample code of GetActiveTab () usage see the examples of GetCharLinePos() or SetSQLEditorFont()

 [Methods Index

]

Syntax:

BOOL ActivateTab (int nTab);

Return Value:
TRUE if the operation is successful, otherwise FALSE.

Parameters:

nTab

Specifies the tab that will be active, may be any of the enumeration values of EQBActiveTab:

QB_TAB_QUERY = 0,

QB_TAB_RESULT = 1

Remarks:

Call this method to control current active view.

 [Methods Index

]

Syntax:

BOOL ShowResultTab (int bVisible);

Return Value:
TRUE if the operation was successful, otherwise FALSE.

Parameters:

bVisible

Specifies the visibility of the Result tab in the ELS-QB Control.

Remarks:

Call this method to show / hide the Result tab of ELS-QB Control (as well as the Execute button).

For example this method can be used if user preferred not to execute the query in the ELS-QB, but to only apply the CheckSQLSyntax() function, while for the actual execution of the query, they simply use the GetSQLText() and bind the SQL command to the FlexGrid (or other grid controls).

Note: If this method is never called, the Result tab will be shown by default.

Example:

void CMyQBView::OnInitialUpdate()

{

............................

............................

m_QBCtrl.ShowResultTab(FALSE);

}

void CMyQBView::OnExecute()

{

CString strSQL = m_QBCtrl.GetSQLText();

FillFlexGrid(strSQL);
}

 [Methods Index

]

Syntax:
BOOL SetSQLEditorFont (LPCTSTR lpszFontName,

 BOOL bItalic,

 BOOL bBold,

 long lSize);

Return Value:
TRUE if the operation is successful, FALSE otherwise.

Parameters:

lpszFontName

Specifies the typeface name of the font to be set.

bItalic

Specifies if the font to be set is Italic or not.

bBold

Specifies if the font to be set is bold or not.

lSize

Specifies the size of the font to be set.

Remarks:

Call this method to set the font of the SQL pane editor of ELS-QB component.

Example:

This sample code shows how to use SetSQLEditorFont() and SetGridFont() methods to set the fonts of ELS-QB control’s SQL editor pane or Result tab cor-respondingly. The task is accomplished with the help of Common Dialog for Fonts.

void CELS_QBDemoView::OnViewFont()

{

CFontDialog dlg;

........................

// initialize corresonding dialog settings

........................

if(dlg.DoModal() == IDOK)

{

CString strFontName;

BOOL bItalic, bBold;

long lFontSize;

if(m_QBCtrl.GetActiveTab() == 0)

{

strFontName = dlg.GetFaceName();

bItalic = !!(dlg.m_cf.lpLogFont->lfItalic);

bBold = (dlg.m_cf.lpLogFont->lfWeight == FW_BOLD);

lFontSize = dlg.GetSize()/10;

m_QBCtrl.SetSQLEditorFont(strSQLFontName,

bSQLItalic,

bSQLBold,

lSQLFontSize);

}

else if(m_QBCtrl.GetActiveTab() == 0)

{

bBold = (dlg.m_cf.lpLogFont->lfWeight == FW_BOLD);

bItalic = !!(dlg.m_cf.lpLogFont->lfItalic);

strFontName = dlg.GetFaceName();

lFontSize = dlg.GetSize()/10;

BOOL bStikeOut, bUnderline;

bStikeOut = !!(dlg.m_cf.lpLogFont->lfStrikeOut);

bUnderline = !!(dlg.m_cf.lpLogFont->lfUnderline);

long lFontColor = (long)dlg.m_cf.rgbColors;

m_QBCtrl.SetGridFont(strFontName,

bItalic,

bBold,

lFontSize,

bStikeOut,

bUnderline,

lFontColor);

}

}

}

[Methods Index

]

Syntax:
BOOL SetGridFont (LPCTSTR lpszFontName,

 BOOL bItalic,

 BOOL bBold,

 long lSize,

 BOOL bStrikeOut,

 BOOL bUnderline,

 long lColor);

Return Value:
TRUE if the operation is successful, FALSE otherwise.

Parameters:

lpszFontName

Specifies the typeface name of the font to be set.

bItalic

Specifies if the font to be set is italic or not.

bBold

Specifies if the font to be set is bold or not.

lSize

Specifies the size of the font to be set.

bStrikeOut

Specifies if the font to be set is strikeout or not.

bUnderline

Specifies if the font to be set is underline or not.

lColor

Specifies the color of the font to be set.

Remarks:

Call this method to set the font of the Result grid of ELS-QB component.

Example:

For a sample code of SetGridFont() usage see the example of SetSQLEditorFont()
 [Methods Index

]

Syntax:

BSTR GetQueryText ();

Return Value:
BSTR string object containing the text of the currently active SQL statement from the SQL pane.

Remarks:

Call this method to obtain the SQL query text displayed in the SQL pane of ELS-QB control.

Note: GetQueryText() method is equivalent to GetSQLText().

Example:

For a sample code of GetQueryText() usage see the example of GetSQLText()
 [Methods Index

]

Syntax:

BOOL SetSQLText (LPCTSTR sSQLText);

Return Value:
TRUE if a query is open and operation successful, otherwise FALSE.

Parameters:

sSQLText

Pointer to a string representing query text.

Remarks:

Call this method to set the query text or the content of the SQL pane of the ELS-QB control programmatically.

Note: SetSQLText() method is equivalent to SetQueryText().

Example:

For a sample code of SetSQLText ()) usage see the usage of SetQueryText () in the example of GetSQLText()
 [Methods Index

]

Syntax:

BOOL DoPageSetup (LPCTSTR lpszKey);

Return Value:
TRUE if operation successful, otherwise FALSE.

Parameter:

lpszKey

Pointer to a string representing the name of the registry key dedicated to store page setup information.

Remarks:

This method will call the Page Setup dialog of ELS-QB component with initial values loaded from corresponding registry key specified via the parameter lpszKey.

 Note: If Page Setup dialog is OK-ed by user, the method stores the input in the system registry.
Example:

This sample code shows how to call Page Setup dialog within ELS-QB component, assuming that some hypothetic registry key has been set as Page Setup storage for ELS-QB component by preceeding call of SetRegistryKey() method.
void CELS_QBDemoView:: CELS_QBDemoView ()

{

...................

m_strPageSetupKey =

_T(“Software\\MyCompany\\MyQBDemo”);

}

void CELS_QBDemoView::OnInitialUpdate()

{

// some m_QBCtrl initialization code here

....................

m_QBCtrl.SetRegistryKey(m_strPageSetupKey);

....................

}

void CELS_QBDemoView::OnFilePageSetup()

{

m_QBCtrl.DoPageSetup(m_strPageSetupKey);

}

[Methods Index

]

Syntax:

BOOL DoIdle (long lCount);

Return Value:
TRUE if operation successful, otherwise FALSE.

Parameters:

lCount

Specifies a integer number.

Remarks:

Call this method to allow ELS-QB component to perform its idle task processing.

Example:

This sample code shows how to call DoIdle() method of ELS-QB component from overriden OnIdle() of host application. It is done to let ELS-QB component perform its Idle processing tasks.

Particularily such a call becomes necessary when invoking Print Preview dialog within ELS-QB component to properly update dialog’s Command UI-s.

BOOL CELS_QBDemoApp::OnIdle(LONG lCount)

{

CMDIFrameWnd* pFrame =

(CMDIFrameWnd*)AfxGetApp()->m_pMainWnd;

CMDIChildWnd* pChild =

 (CMDIChildWnd *) pFrame->GetActiveFrame();

CELS_QBDemoView* pView =

(CELS_QBDemoView *)pChild->GetActiveView();

if(pView != NULL)

pView->m_QBCtrl.DoIdle(lCount);

return CWinApp::OnIdle(lCount);

}

 [Methods Index

]

Syntax:

BOOL SetResultEditMode (BOOL bOn);

Return Value:
TRUE if operation successful.

Parameters:

bOn

Toggles the editability mode of the grid in the Result tab ON / OFF (1 / 0).

Remarks:

Call this method to toggle edit mode of Result tab of ELS-QB component.

Note: If SetResultEditMode function is never called, by default the grid of Result tab is non-editable. Also, note that this method is applicable only when the result grid is in ADO bound mode. For further information about ADO bound grid see SetResultGridADOBound method.
Example:

This sample code shows how to allow the end user to toggle edit mode of Result tab grid of the ELS-QB control.

// some command handler

void CELS_QBDemoView::OnCommandToggleGridEditMode()

{

BOOL bEdit = m_QBCtrl.GetResultEditMode();

m_QBCtrl.SetResultEditMode(!bEdit);

}

[Methods Index

]

Syntax:

BOOL GetResultEditMode ();

Return Value:
The state of editability of the Result tab grid of ELS-QB component.

Remarks:

Call this method to obtain the state of editability of the Result tab grid of ELS-QB component.

Example:

For a sample code of GetResultEditMode() usage see the example of

SetResultEditMode()
 [Methods Index

]

Syntax:

BOOL SetRegistryKey (LPCTSTR lpszKey);

Return Value:
TRUE

Parameter:

lpszKey

Pointer to a string representing the name of the registry key dedicated to store page setup information.

Remarks:

Call this method to specify the name of a registry key which contains page setup information for ELS-QB component.

Note: By default ELS-QB component contains an empty string as a key to store page setup information.

Example:

For a sample code of SetRegistryKey() usage see the example of DoPageSetup()
 [Methods Index

]

Syntax:

BOOL GetOverStrike ();

Return Value:
TRUE if SQL editor pane of ELS-QB component is in overstrike mode, otherwise FALSE.

Remarks:

Call this method to obtain the overstrike state of ELS-QB component’s SQL pane editor.

Note: In the overstrike mode, text insertions overwrite any characters to the right of the caret.

Example:

This sample code shows how to use GetOverStrike() method to update contents of some display field, showing the overstrike state of SQL editor pane of ELS-QB control.

void CELS_QBDemoView::OnShowOVRIndicator(CCmdUI* pCmdUI)

{

CString str =

(m_QBCtrl.GetOverStrike()) ? _T("OVR") : _T("");

pCmdUI->SetText(str);

}

 [Methods Index

]

Syntax:

BSTR GenerateHTMLString(BOOL bIsMailResult,

 BOOL bDescription,

 BOOL bSQL,

 BOOL bLogo,

 LPCTSTR lpszHrefSite,

 LPCTSTR lpszHrefText,

 LPCTSTR lpszText);

Return Value:
BSTR string object, which represents the query result in HTML formatted text.

Parameters:

bIsMailResult

If TRUE an extra empty line is appended at the start and end of the generated output, so that the user may enter further e-mail message before and after it.

bDescription

If TRUE a section with the “Description” header will be included in the generated output.

bSQL

If TRUE a section with the “SQL Command” header will be included in the generated output below which the SQL command text is included.

bLogo

If TRUE the generated output will include a logo as a footnote.

lpszHrefSite

Pointer to a string representing URL address in the hyperlink reference included in the logo.

lpszHrefText

Pointer to a string representing the text of hyperlink reference included in the logo.

lpszText

Pointer to a string representing additional text information to be included in logo.

Remarks:

Call this method to obtain the contents of Result tab grid of ELS-QB component in HTML format.

Example:

This sample code shows how to generate the result of query as HTML string within ELS-QB control.

void CMyQBView::OnCommandOutputresultashtml()

{

// a string containing some URL address, e.g.

CString strURL = _T(“www.XYZSoft.com”);

// a string containing the text of hyperlink reference

CString strURLText = _T(“XYZ”);

// a string for additional information to be included

// in the generated output, may be some copyright

// informtion, e.g.

CString strText =

_T(“Copyright © 2001 XYZ Software, Inc.”);

CString strHTMLText;

strHTMLText = m_QBCtrl.GenerateHTMLString(FALSE,

TRUE,

TRUE,

TRUE,

 strURL,

strURLText,

strText);

if(strText.IsEmpty())

return;

// do something with generated HTML string

...................

...................

}

 [Methods Index

]

Syntax:

BOOL SetDBConnection (LPCTSTR sConnStr);

Return Value:
TRUE if operation is successful, otherwise FALSE.

Parameter:

sConnStr

Specifies a connection string to be passed to ELS-QB.

Remarks:

Call this method to set the the connection string of the currently open connection node to the value of sConnStr.

Note: A connection node must be open in the Connections pane of ELS-QB component to be able to apply this function.
 Example:

This sample code shows how to set new connection string for currently active connection in ELS-QB component:

BOOL CELS_QBDemoView::SetConnString(LPCTSTR lpNewConnStr)

{

CString strCurrConn = m_QBCtrl.GetDBConnection();

if(strCurrConn != lpstrNewConnStr)

return m_QBCtrl.SetDBConnectionName(lpNewConnStr);

return TRUE;

}

 [Methods Index

]

Syntax:

BSTR GetDBConnection ();

Return Value:
BSTR string object containing the connection string of the currently open connection in the ELS-QB control.

Remarks:

This method returns the connection string of the currently active connection in the Databases folder of ELS-QB control’s Connection pane.

Example:

For a sample code of GetDBConnection() usage see the example of SetDBConnection()

[Methods Index

]

Syntax:

BSTR GetErrorMessage ();
Return Value:
BSTR string object that contains the description of the last error (if any).
Remarks:

This method may be used as an alternative to the default error message reporting mechanism of the ELS-QB component. By using the ShowErrorMessage method to hide the default error message box dialog, you may suppress or redirect the error message via GetErrorMessage to your custom error message window.
Example:

For a sample code of usage, please check the OnCommandCheckSQLSyntax function of CELS_QBDemoView in ELS_QBDemo project.
[Methods Index

]

Syntax:

void ClearErrorMessage ();
Return Value:
void
Remarks:

This method clears the internal error message variable of the ELS-QB component. ClearErrorMessage may be used together with the GetErrorMessage and ShowErrorMessage methods to implement a custom error reporting mechanism in the host application.
Example:

For a sample code of usage, please check the OnCommandCheckSQLSyntax function of CELS_QBDemoView in ELS_QBDemo project.

 [Methods Index

]

Syntax:

BOOL ShowErrorMessage (long bShow);
Return Value:
TRUE if the function is successful, otherwise FASLE.
Parameter:

bShow

Specifies the visibility of the default error message dialog of the ELS-QB component (0 or 1).

Remarks:

This method is used to hide the default error message reporting dialog of the ELS-QB component. So that, one may implement a custom error message reporting mechanism in the host application. By default, if this method is never called, the default error message dialog of ELS-QB will display the error messages.
Example:

For a sample code of usage, please check the OnCommandCheckSQLSyntax function of CELS_QBDemoView in ELS_QBDemo project.

 [Methods Index

]

Syntax:

BOOL GetResultGridADOBound ();
Return Value:
TRUE if the Result grid is in ADO bound mode, otherwise FALSE.
Remarks:

This method is used to check if the grid in the Result tab-view is in ADO bound mode. ADO bound mode will inhance the performance of displaying the query result in the Result tab. Note that, the query result can be made directly editable only when this grid is in ADO bound mode.
Example:

The following sample code illustrates the usage of the GetResultGridADOBound method:
void CELS_QBDemoView::OnCommandSetAdoBound()

{

if (!m_QBCtrl.GetResultGridADOBound())

m_QBCtrl.SetResultGridADOBound(TRUE);

}
 [Methods Index

]

Syntax:

BOOL SetResultGridADOBound (long bOn);
Return Value:
TRUE if the function is successful, otherwise FALSE
Parameter:

bOn

Specifies the value (1 or 0) to turn on or off the ADO bound mode of the Result tab-view grid.

Remarks:

This method is used to turn on/off the ADO bound mode of the Result tab-view grid. ADO bound grid will enhance the performance of the displaying of the query result in the Result tab-view. Also, note that the query result can be made directly editable only when this grid is in ADO bound mode.
Example:

For a sample code of usage of the SetResultGridADOBound method, please check the OnCommandAdoBound method of the CELS_QBDemoView module of the ELS_QBDemo project. Also, check the example of GetResultGridADOBound method.
[Methods Index

]

Syntax:

BOOL NewQueryX (long nQType);
Return Value:
TRUE if the method is successful, otherwise FALSE.
Parameter:

nQType

Specifies the query type via the EQBQTYPE enumeration values:

QB_TYPE_SELECT

= 1,

QB_TYPE_INSERT

= 2,

QB_TYPE_INSERTVALUES
= 3,

QB_TYPE_DELETE

= 4,

QB_TYPE_UPDATE

= 5,

QB_TYPE_MAKETABLE
= 6.

Remarks:

This method is an extended version of the NewQuery method, which will create an instance of an empty query builder window based on the query type specified vai the nQType argument.
NOTE: See the INSERT, UPDATE, DELETE Queries section for more details.
Example:

For a sample code of usage, please check the following function of the CELS_QBDemoView module in the ELS_QBDemo project:
void CELS_QBDemoView::OnFileNewqueryX(UINT uID)

{

// This will create a query node inside the currently active

// connection container in the DB Connections pane.

uID = uID - ID_NEWQUERY_SELECT + 1;

if(uID >= QB_TYPE_SELECT && uID <= QB_TYPE_MAKETABLE)

m_QBCtrl.NewQueryX(uID);

}
[Methods Index

]

Syntax:

BOOL ShowDBObjectsX (long nShowComb, LPCTSTR sPattern);
Return Value:
TRUE if the method is successful, otherwise FALSE.
Parameter:

nShowComb

Specifies the database objects to show, and may be a value defined as a combination of the following EQBShowDBObjects enumeration:

QB_DVW_ALL

= 1,

QB_DVW_DBONLY

= 2,

QB_DVW_TABLES

= 4,

QB_DVW_VIEWS

= 8,

QB_DVW_PROCS

= 16,

QB_DVW_FUNCTIONS

= 32.

sPattern
Specifies a prefix or suffix pattern to filter out the database objects by name.

This pattern must have the following syntax form:

pttrn_1,pf_1; pttrn_2,pf_2; ... ; pttrn_N,pf_N
or

*\pttrn_1,pf_1; pttrn_2,pf_2; ... ; pttrn_N,pf_N
Where pttrn_j is any desired string pattern and pf_j equals 0 if the corresponding pattern is intended to be a prefix pattern, or 1 if suffix pattern. The “*” notation means all objects defined by the first argument, while the “\” is the set subtraction notation. Note that each pattern is a pair of pattern string and prefix-suffix indicator separated by a semi-colon.

Remarks:

This method is an extension of the ShowDBObjects method, and may be used to restrict the visibility of the database objects in the DB Browser based on the category defined by the first argument and the pattern specification defined by the second argument.
Example:

For example the following call will display only table objects of the database that have names that start with the “QB_” or end with the “_TBL” strings:

m_QBCtrl.ShowDBObjectsX(QB_DVW_TABLES, _T("QB_,0;_TBL,1");

The following call will make the DB Browser to show all database objects that do not start with the “SYS_” string:

m_QBCtrl.ShowDBObjectsX(QB_DVW_ALL, _T("*\SYS_,0");
For a more detailed usage of the ShowDBObjectsX method, please check the OnFileShowdbobjects function of the CELS_QBDemoView module in the ELS_QBDemo project.
 [Methods Index

]

Syntax:

CdBASEExport dBASEExport ();
Return Value:
CdBASEExport object.
Remarks:

This method initializes and returns a CdBASEExport object if successful, otherwise it returns NULL. See also the dBASEExport object for further details.
Example:

For a sample code of usage, please check the OnCommandExport function of the CELS_QBDemoView module in the ELS_QBDemo project.
[Methods Index

]

Syntax:

CTextExport TextExport ();
Return Value:
CTextExport object.
Remarks:

This method initializes and returns a CTextExport object if successful, otherwise it returns NULL. See also the TextExport object for further details

Example:

For a sample code of usage, please check the OnCommandExport function of the CELS_QBDemoView module in the ELS_QBDemo project.
 [Methods Index

]

Syntax:

CXMLExport XMLExport ();
Return Value:
CXMLExport object.
Remarks:

This method initializes and returns a CXMLExport object if successful, otherwise it returns NULL. See also the XMLExport object for further details

Example:

For a sample code of usage, please check the OnCommandExport function of the CELS_QBDemoView module in the ELS_QBDemo project.
 [Methods Index

]

Events

Event PreExecute()

PreExecute event of ELS-QB component is fired when the user triggers the execution of a query within ELS-QB component, and it is the first thing that occurs in the internal query processing chain of ELS-QB component. It occurs before the SQL text is validated against the back-end database and before the internal SQL parsing.

Such a behavior of PreExecute event will give the user a chance to manipulate the SQL text in the PreExecute event, which in turn allows the implementation of custom mechanisms for running parameterized queries in the host application.

The following VC++ pseudo code illustrates a possible usage of this feature of ELS-QB component:

void CELS_QBDemoView::OnPreExecuteElsqbctrl()

{

// the CParamDlg is a CDialog derived class in the host application

// via which the user may enter the query parameter value. One may

// follow this example to implement a more advance dialog, where

// labels and text-boxes are dynamically created depending on the

// number of parameter variables for the parameterized query

CString
strSQL, strFldName;

Int

nPos;

// get the current SQL text to check for ?-symbols

strSQL = m_QBCtrl.GetSQLText();

nPos = strSQL.Find(_T('?'));

if(nPos >= 0)

{

// calculate word length and using Mid() function

// get strFldName as the word following ?-symbol

// pass this parameter name to the CParamDlg

// to update static control field Name

CParamDlg dlg;

dlg.m_statFieldName = strFldName;

if(dlg.DoModal() == IDOK)

{

strSQL = strSQL.Left(nPos);

strSQL = strSQL + dlg.m_strValue;

m_QBCtrl.SetQueryText(strSQL);

// since CancelExecute was not called, the default is to

// automatically proceed with the execution of the query

// after this PreExecute event

}

else

// the user clicked Cancel button, so cancel

// the query execution

m_QBCtrl.CancelExecute();

}

}

[Events Index]

Event PostExecute()

PostExecute event of ELS-QB component is fired when the user triggers the execution of a query within ELS-QB component, and it is the last thing that occurs in the internal query processing chain ELS-QB component. It occurs after ELS-QB component executes a query allowing a way to provide a custom event handling behavior.

The following VC++ sample code illustrates a possible usage of this feature of ELS-QB component:

void CELS_QBDemoView::OnPostExecuteElsqbctrl()

{

 CString strMsg;

strMsg.Format(_T("Total: %l records"), m_QBCtrl.GetRecCount());

AfxMessageBox(strMsg);

}

[Events Index]

Event OnNotifyStatus(long lProcessedrecCount);

OnNotifyStatus event of ELS-QB component is fired during exporting to Text Format. In the loop of the export process at every lProcessedrecCount processed a status notification event is raised passing the count of records processed to the host application. So if lProcessedrecCount is 0, no status notification event will be raised, if lProcessedrecCount is 1, then status notification event will be raised at every processed record, if lProcessedrecCount is 50, then status notification event will be raised at every 50 processed records.

The following VC++ sample code illustrates a possible usage of this feature of ELS-QB component:

void CELS_QBDemoView::OnNotifyStatusElsQBCtrl(long lProcessedrecCount)

{

if(m_pDlgProgress)

m_pDlgProgress->DoProgress(lProcessedrecCount, true);

}

[Events Index]

Constants

Command IDs

In the ELS-QB component the following constants are defined as command identifiers used by DoCommand() and QueryStatus() methods:

QB_CMD_UNDO

= 1,

QB_CMD_REDO

= 2,

QB_CMD_CUT

= 3,

QB_CMD_COPY

= 4,

QB_CMD_PASTE

= 5,

QB_CMD_SELECTALL

= 6,

QB_CMD_FIND

= 7,

QB_CMD_REPLACE

= 8,

QB_CMD_PRINT

= 9,

QB_CMD_PRINT_PREVIEW

= 10,

QB_CMD_PAGE_SETUP

= 11

See also: Pane IDs.

[Methods Index

]

Pane IDs

In the ELS-QB component the following constants are defined as pane identifiers used by ShowPane() and IsPaneVisible() methods:

QB_RELATION_PANE

= 1

QB_COLUMNS_PANE

= 2

QB_SQL_PANE

= 3

QB_CONNECTION_PANE
= 4

QB_DBBROWSER_PANE
= 5

See also: Command IDs.

[Methods Index

]

ToolbarButton IDs

In the ELS-QB component the following constants are defined as toolbar button identifiers used by ShowToolButton() methods:

QB_CONNPANE_BTN

= 1

QB_DVWPANE_BTN

= 2

QB_RELPANE_BTN

= 3

QB_COLPANE_BTN

= 4

QB_SQLPANE_BTN

= 5

QB_CHKSQL_BTN

= 6

QB_EXECUTE_BTN

= 7

QB_STOP_BTN

= 8

QB_ALL_BTNS

= 9

 [Methods Index

]

DBObjects IDs

In the ELS-QB component the following constants are defined as DB Browser object type identifiers used by ShowDBObjects()methods:

QB_DVW_ALL

= 1

QB_DVW_DBOONLY

= 2

QB_DVW_TABLES

= 4

QB_DVW_VIEWS

= 8

QB_DVW_PROCS

= 16

QB_DVW_FUNCTIONS

= 32

[Methods Index]

ColumnToolbarButtons IDs
In the ELS-QB component the following constants are defined as SQL functions toolbar button identifiers used by ShowColumnsToolButton() methods:

QB_CONCATSTR_FNBTN
= 1

QB_CONCATMSK_FNBTN
= 2

QB_AGGREGATE_FNBTN
= 4

QB_STRING_FNBTN

= 8

QB_NUMERIC_FNBTN
= 16

QB_DATEPART_FNBTN
= 32

QB_DATENAME_FNBTN
= 64

QB_TOCHAR_FNBTN

= 128

QB_TONUM_FNBTN

= 256

QB_TODATE_FNBTN

= 512

QB_NULLCASE_FNBTN
= 1024

QB_SIMPLECASE_FNBTN
= 2048

[Methods Index]

ActiveTab IDs

In the ELS-QB component the following constants are defined as tab identifiers used by

ActivateTab() methods:

QB_TAB_QUERY
= 0

QB_TAB_RESULT
= 1

[Methods Index]

SQLCommandType IDs

In the ELS-QB component the following constants are defined as SQL command type identifiers used by EnableSQLCommand() methods:

QB_SQL_INSERT
= 1

QB_SQL_UPDATE
= 2

QB_SQL_DELETE
= 4

QB_SQL_CREATE
= 8

QB_SQL_ALTER
= 16

QB_SQL_DROP
= 32

QB_SQL_EXEC
= 64

QB_SQL_ALL

= 128
[Methods Index]

TextExportFormatType IDs
In the ELS-QB component the following constants are defined as Text Export format type identifiers used by FormatType property of TextExport objects:

QB_EXPORT_FIXED

= 1

QB_EXPORT_DELIMITED
= 2

[Methods Index]

dBASEExportDBVersion IDs

In the ELS-QB component the following constants are defined as dBASE version identifiers used by Export method of dBASEExport objects:

QB_EXPORT_dBASE_III
= 3

QB_EXPORT_dBASE_IV
= 4

QB_EXPORT_dBASE_5
= 5

[Methods Index]

XMLExportFlags IDs

In the ELS-QB component the following constants are defined as XML Export flag identifiers used by Export method of XMLExport objects:

QB_EXPORT_XML_ALL

= 0

QB_EXPORT_XML_EXCLUDEHDR

= 1

QB_EXPORT_XML_EXCLUDEROOT

= 2

QB_EXPORT_XML_EXCLUDEHDRROOT
= 3

[Methods Index]

Query Type Command IDs

In the ELS-QB component the following constants are defined as query type flag identifiers used by NewQueryX method:

QB_TYPE_SELECT

= 1

QB_TYPE_INSERT

= 2

QB_TYPE_INSERTVALUES
= 3

QB_TYPE_DELETE

= 4

QB_TYPE_UPDATE

= 5

QB_TYPE_MAKETABLE
= 6

 [Methods Index]

Objects

TextExport

This object handles all text export formats

Properties:

FormatType

This property sets or gets the text format type, and may be any of the enumeration values of EQBTextExportFormatTypeEnum:

QB_EXPORT_FIXED

= 1,

QB_EXPORT_DELIMITED
= 2

QB_EXPORT_FIXED text format with fixed width

QB_EXPORT_DELIMITED text format with variable delimeted, this is default value
FieldDelimiter

This property sets or gets the field delimiter, applicable only in the variable delimited format case, with default value being the comma character (i.e. ",").

TextQualifier
This property sets or gets the text qualifier for fields, applicable only in the variable delimited format case, with default value being none (i.e. no text qualifier delimiters around text fields).

DateDelimiter

This property sets or gets the date delimiter, applicable in both fixed width and variable delimited format cases, with default value being "/".

TimeDelimiter

This property sets or gets the time delimiter, applicable in both fixed width and variable delimited format cases, with default value being ":".

DateFormat

This property sets or gets the date format, applicable in both fixed width and variable delimited format cases, possible values may be combined from the following format symbols:

M (or m)

specifies the month in number (no leading zeros),

MM (or mm)
specifies the month in number (with leading zeros),

D (or d)

day number (no leading zeros),

DD (or dd)
day number (with leading zeros),

YY (or yy)
year number (two digits with leading zeros),

YYYY (or yyyy)
year number (four digits with leading zeros),

S (or s)

second (no leading zeros),

SS (or ss)
second (with leading zeros),

N (or n)

minute (no leading zeros),

NN (or nn)
minute (with leading zeros),

H (or h)

hour (no leading zeros),

HH (or hh)
hour (with leading zeros),

DecimalSymbol

This property sets or gets the decimal symbol, applicable in both fixed width and variable delimited format cases, with default value being ".".

IncludeFieldnames

This property sets or gets the flag whether to include the fieldnames as the first row of the outputted text, with default being FALSE (i.e. do not include fieldnames),

Methods:

BOOL Open();

This method opens the recordset of the query and fills the InFields collection, it returns TRUE if successful, otherwise FALSE
BOOL Close();

This method closes the recordset of the query in the TextExport object, it returns TRUE if successful, otherwise FALSE,
long Export(BSTR sFilename, long lRecs);

This method will export the result of the currently open query to the format specified by the current TextExport object, it will return -1 if errors occurred or the number of records outputted, if successful. The string variable sFilename specifies the path and filename of the output file (created in text mode), while lRecs specifies the number, such that at every lRecs of records outputted, a status notification is triggered. The default value is 0, which means no status notification is triggered until at the end of export completion.

LPDISPATCH InFields();

This method return an IDispatch interface of InFields collection.

LPDISPATCH OutFields();

This method return an IDispatch interface of OutFields collection.

BOOL CancelExport();

This method will terminate the execution of an Export method of TextExport object.

BOOL IsRunning();

This method returns TRUE if ELS-QB component is in process of Export method execution of TextExport object, otherwise FALSE.

The following VC++ pseudo code illustrates a possible usage of this feature of TextExport object of ELS-QB component:

void CMyQBView::OnCommandTextExport()

{

CString strFileName;

..................

CTextExport& objTxtExport = m_QBCtrl.TextExport();

if(!objTxtExport.Open())

return;

objTxtExport.SetFormatType(QB_EXPORT_FIXED);

objTxtExport.SetDateFormat(_T(“MMDDYYYY”));

objTxtExport.SetIncludeFieldnames(TRUE);

objTxtExport.OutFields().Clear();

for(long l=0; l<lCount; l++)

{

if(objTxtExport.OutFields().Add() == -1)

return;

objTxtExport.OutFields().Item(l).SetName(

objTxtExport.InFields().Item(l).GetName());

objTxtExport.OutFields().Item(l). SetLength(

objTxtExport.InFields().Item(l).GetLength());

}

long lRecs = objTxtExport.Export(strFileName, 0);
if(lRecs == -1)

MessageBox(_T(“Export Failed!”));

else

{

CString strMsg;

strMsg.Format(_T(“%ld records exported!”), lRecs);
MessageBox(strMsg);

}

}

[Methods Index

]

InField

Represents a field in the InFields collection.

Properties:

DataType

This property gets the data type of the field, read-only property ranging through an enumeration EQBDataType similar to the ADO data type enumeration,

Name

This property gets the name of the actual data field (i.e. the column name in the query, may be the alias of a fieldname as defined in the query statement), read-only property.

Length

This property gets the string length equivalent to the field length (read-only property).

Value

This property gets the value of the field (converted to string), read-only property.

[Methods Index

]

OutField

Represents a field in OutFields collection.

Properties:

Name

This property sets the name of the output field.
Length

This property sets the string length of the output field.

Value

This property sets the value of the output field.
[Methods Index

]

dBASEExport

This object handles export into dBASE file formats.

Methods:

long Export(BSTR sFilename, long nDBVersion);

This method will export the result of the currently open query to the dBASE file fomat, it will return -1 if errors occurred or the number of records outputted, if successful. The string variable sFilename specifies the path and filename of the output file, while nBDVersion is the dBASE version, which may be one of the enumeration values of EQBdBASEExportDBVersion:

QB_EXPORT_dBASE_III = 3,

QB_EXPORT_dBASE_IV = 4,

QB_EXPORT_dBASE_5 = 5,

respectively for dBASE III, dBASE IV and dBASE 5.

BOOL CancelExport();

This method will terminate the execution of an Export method of dBASEExport object.

BOOL IsRunning();

This method returns TRUE if ELS-QB component is in process of Export method execution of dBASEExport object, otherwise FALSE.

The following VC++ pseudo code illustrates a possible usage of this feature of dBASEExport object of ELS-QB component:

void CMyQBView::OnCommandBASEExport()

{

..................

CdBASEExport& objExport = m_QBCtrl.dBASEExport();

long lRecs = objExport.Export(strFileName, 0);
..................

}

[Methods Index

]

XMLExport

This object handles export into XML format.

Methods:

long Export(BSTR sFilename, long nFlag);

This method will export the result of the currently open query to XML format, which consists of a document header, the data root tag, the record tags, and the tags for each field in the record. It will return -1 if errors occurred or the number of records outputted, if successful. The string variable sFilename specifies the path and filename of the output file, while nFlag may be one of the enumeration values of EQBXMLExportFlags:

QB_EXPORT_XML_ALL = 0,

QB_EXPORT_XML_EXCLUDEHDR = 1,

QB_EXPORT_XML_EXCLUDEROOT = 2,

QB_EXPORT_XML_EXCLUDEHDRROOT = 3

QB_EXPORT_XML_ALL - include both XML document header and the data root tags

QB_EXPORT_XML_EXCLUDEHDR - do not include the XML document header

QB_EXPORT_XML_EXCLUDEROOT - do not include the data root parent tag

QB_EXPORT_XML_EXCLUDEHDRROOT - do not include both the XML header and the data root parent tag

BOOL CancelExport();

This method will terminate the execution of an Export method of XMLExport object.

BOOL IsRunning();

This method returns TRUE if ELS-QB component is in process of Export method execution of XMLExport object, otherwise FALSE.

[Methods Index

]

Collections

InFields

Contains all the InField objects. This is a collection of all fields in the input, essentially defined by the query builder's SQL statement in the SQL pane.

Properties:

long Count();

Indicates the number of fields in the collection.

Methods:

LPDISPATCH Item(long index);

Indicates a InField member of a collection by ordinal number, index is a

zero-based index of the field in the query.

[Methods Index

]

OutFields

Contains all the OutField objects. This is a collection of all fields that must be outputted, the items of the collection may be created via add / remove methods.
Properties:

long Count();

Indicates the number of fields in the collection.

Methods:

LPDISPATCH Item(long index);

Indicates a OutField member of a collection by ordinal number, index is a zero-based index of the output field.

long Add();

This method adds an empty OutField item, returns the index if successful,
otherwise –1.

BOOL Remove(long index);

This method removes the OutField item at index position, returns TRUE is successful, otherwise FALSE.

BOOL Clear();

This method clears the whole OutFields collection, returns TRUE if successful, otherwise FALSE.

[Methods Index

]

3

